Effect of zinc-hydroxo species on the growth of one-dimensional ZnO nanostuctures

Nontakoch SIRIPHONGSApak1 and Somyod DENCHITCHAROEN1,*

1Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand

*Corresponding author e-mail: somyod.den@mail.kmutt.ac.th

Abstract

One-dimensional ZnO nanostuctures were grown on ZnO seed layer by hydrothermal method using zinc nitrate (Zn(NO3)2) and sodium hydroxide (NaOH) as precursors. The concentrations of NaOH and Zn(NO3)2 were varied from 40 mM to 680 mM and kept constant, respectively. Effects of increasing the hydroxide ions on the concentration of zinc-hydroxo species in the solution were studied using thermodynamic simulation software. The simulated results showed that Zn(OH)2 and Zn(OH)3 concentrations tended to decrease but Zn(OH)2 was non-linearly increased when the concentration of NaOH at room temperature was increased. After the growth of ZnO, the samples were characterized by FESEM and UV-vis to investigate the morphology and transmittance spectra, respectively. The results showed that the rod density of ZnO nanostuctures was decreased due to lower concentrations of Zn(OH)2 and Zn(OH)3 species affecting ZnO nucleation mode. On the other hand, Zn(OH)2 was competitively higher and involved in growing 1-D ZnO nanostuctures on the nucleation layer resulting in larger diameter and longer length of nanostuctures. For the UV-vis results, the % transmittance spectra in visible region of grown ZnO nanostuctures with NaOH concentrations from 40 to 360 mM were more than 70% but too low transmittance for 520 mM.

1. Introduction

ZnO is an impressive n-type semiconductor that has many interesting properties such as wide-direct bandgap (3.37 eV) and high exciton binding energy (60 meV). Thus, it has high thermal and chemical stability [1]. Nowadays, ZnO is downsized to nanoscale tendency to increase the surface area and then used in many applications such as photocatalytic degradation [2], photoelectrochemical water splitting [3], gas sensor [4], and UV photodetector [5].

There are many methods to synthesize ZnO nanostuctures such as sol-gel [6], precipitation [7], chemical vapor deposition [8], and hydrothermal method. The hydrothermal is a simple and environmentally friendly method that requires only uncomplicated equipment with an aqueous solution [9]. Generally, Zn(NO3)2 and hexamine ((CH2)6N6) were used as precursors to obtain zinc (Zn2+) and hydroxide (OH-) ions for growing 1-D ZnO nanostuctures [10-13]. The growth of ZnO nanorods is described by the chemical reactions below [9,13]:

\[(CH_2)_6N_6 + 6H_2O \rightarrow 6HCHO + 4NH_3 \] \hspace{1cm} (1)
\[NH_3 + H_2O \leftrightarrow NH_4^+ + OH^- \] \hspace{1cm} (2)
\[Zn(NO_3)_2 \rightarrow Zn^{2+} + 2NO_3^- \] \hspace{1cm} (3)
\[Zn^{2+} + 2HO \rightarrow ZnO(s) + H_2O \] \hspace{1cm} (4)

Hexamine is hydrolyzed to produce formaldehyde (HCHO) and ammonia (NH3) which then reacts with water to have hydroxide ion (OH-). To obtain Zn2+, zinc nitrate is dissolved in water as shown in the reaction (3). Ultimately, the crystallization of ZnO(s) is formed by Zn2+ and OH- ions. Not only hexamine but also alkaline media such as sodium hydroxide (NaOH) [14-16] and potassium hydroxide (KOH) [17] were used as a source of hydroxide ion for growing ZnO nanoparticles due to the precipitation caused by a higher degree of supersaturation of the solution [14].

On the other hand, there are many research groups who used alkalis for growing 1-D ZnO nanostuctures on the seed layer. S. Yamabi and H. Imai [18] presented that NaOH was used to adjust the pH of the solution containing zinc ions to achieve ZnO nanocolumnar film due to a low deposition rate caused by a low level of supersaturation of solution when the concentration of zinc ions and pH were near the edge of phase stability diagram of ZnO(s)–H2O system. R.B. Peterson et al. [19] showed that ZnO nanocolumns were grown on ZnO and AZO seed layers using a hot aqueous solution of zinc nitrate and NaOH with various concentrations. The length of ZnO nanostuctures depended on the concentration of zinc ions in the solution that was tuned by NaOH to maintain the metastable state in the phase stability diagram. However, there are few pieces of research that reported the roles of zinc-hydroxo species on the growth of 1-D ZnO nanostuctures.

In this work, zinc ion concentration was remained constant, and NaOH concentrations were varied from 40 mM to 680 mM. Thermodynamic simulation software was used to display the concentration of each zinc-hydroxo and the other inorganic species in each aqueous solution. After growing ZnO nanostuctures on seed layer by hydrothermal method, morphology and optical property were investigated by FESEM and UV-vis, respectively. The relationship between the concentration of each zinc-hydroxo species and the morphology...
of as-grown ZnO nanostructures was described. Moreover, the % transmittance spectra and optical bandgap were also reported.

2. Experimental

To prepare seed layer, ITO/glass substrates (10 × 10 mm²) were sonicated in acetone and isopropyl alcohol. The substrates were rinsed in deionized water and dried with nitrogen gas 99.5%. Zinc acetate dihydrate and monoethanolamine were used as a precursor and a stabilizer, respectively. The concentration of the precursor is 10 mM, and the molar ratio of stabilizer to precursor is 1. Isopropyl alcohol was used as a solvent. The mixed solution was stirred at room temperature for 3 h. The homogeneous solution was then spin-coated on substrates with a rotational speed of 2500 rpm. Finally, the substrates with seed layer were annealed at 300°C to improve the crystal structure.

For growing ZnO nanostructures, the aqueous solutions containing zinc ions and hydroxide ions were prepared separately. 10 mM zinc nitrate hexahydrate was used as a source of zinc ions while hydroxide ions were dissolved from sodium hydroxide with various concentrations of 40, 200, 360, 520, and 680 mM. Each solution was stirred at room temperature for 1 h, then mixed by the volume ratio of 1:1, and stirred for 2 min before pouring into a Teflon liner stainless steel autoclave. The substrate with ZnO seed layer was placed at the bottom of the Teflon container. The autoclave was put into the oven at 90°C for 6 h. After the growth of ZnO in the autoclave, the samples with nanostructures were rinsed in DI water several times and then dried with nitrogen gas 99.5%.

Possible inorganic species in each solution with the saturation index were simulated using Visual MINTEQ version 3.1. The temperature and concentrations of Zn(NO₃)₂ and NaOH were added into the software. Firstly, the concentration [c] (Equation (5)) of each species was calculated from the activity [a] based on the stability constant Kᵢ (Equation (6-7)) of each reaction (at 25°C) as shown in Table 1.

\[
[a] = \gamma [c] \tag{5}
\]

Where \(\gamma \) is the activity coefficient.

\[
K_i = \frac{[Zn(OH)_2^{2-}]}{[Zn^{2+}] [OH^-]^{2}} \quad ; \quad i = 1 \tag{6}
\]

\[
K_i = \frac{[Zn(OH)_3^{3-}]}{[Zn^{2+}] [OH^-]^{3}} \quad ; \quad i = 2, 3, 4 \tag{7}
\]

Where \(i \) is the coordination number of Zn²⁺ ion and \(K_i \) is the stability constant from NIST. Secondly, the saturation index S of each solution was determined from the dissolution reaction \(8 \) in case of \(i = 2, 3, 4 \) and the Equation \(9 \).

\[
S = \log \text{IAP} \cdot \log K_{sp} = \log \text{IAP} \cdot \frac{1}{K_{sp}} \tag{9}
\]

Table 1. Important chemical reactions in solution and reaction constants (K) at 25°C.

<table>
<thead>
<tr>
<th>Chemical reaction</th>
<th>(\log(K)) (25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Zn^{2+} + OH^- \rightarrow Zn(OH)_2)</td>
<td>5.0</td>
</tr>
<tr>
<td>(Zn^{2+} + 2OH^- \rightarrow Zn(OH)_2)</td>
<td>11.1</td>
</tr>
<tr>
<td>(Zn^{2+} + 3OH^- \rightarrow Zn(OH)_3)</td>
<td>13.6</td>
</tr>
<tr>
<td>(Zn^{2+} + 4OH^- \rightarrow Zn(OH)_4^{2-})</td>
<td>14.8</td>
</tr>
<tr>
<td>(Zn(OH)_2 \rightarrow ZnO + H_2O)</td>
<td>5.67</td>
</tr>
<tr>
<td>(Zn(OH)_2 \rightarrow ZnO + H_2O + OH^-)</td>
<td>3.17</td>
</tr>
<tr>
<td>(Zn(OH)_3^{2-} \rightarrow ZnO + H_2O + 2OH^-)</td>
<td>1.97</td>
</tr>
</tbody>
</table>

\[
ZnO + H_2O + (i-2)OH^- \leftrightarrow Zn(OH)_{2-i}^{2-} ; K_{sp} \tag{8}
\]

Where IAP is the actual ion activity product and \(K_{sp} \) is the solubility product constant.

To characterize the samples, field-emission scanning electron microscope (FESEM, Hitachi S-4700) were introduced to discover the rod density from the morphology. The ultraviolet-visible spectrophotometer (UV-vis, Shimadzu UV-3101PC) was also used to study the % transmittance and optical bandgap of ZnO nanostructures.

3. Results and discussion

The morphology of 1-D ZnO nanostructures would change when the concentration of NaOH was increased from 40 mM to 680 mM as shown in Figure 1. With concentrations of 40 and 200 mM, the layer of nanostructure showed only short and dense nanorods. When the concentrations of NaOH were higher at 360, 520, and 680 mM, the morphology looked different in the way of dimension, and nanostructures were more flexible with a high aspect ratio compared to that of nanostructures at 40 and 200 mM. Moreover, the tips of each ZnO nanowire in NaOH concentration of 360, 520, and 680 mM were assembled together by nanocarpet effect [20] due to lower density of nanowires which were more flexible.

The apparent rod density of 1-D ZnO nanostructures was defined as the number of nanorods or nanowires per square micron from top-view FESEM images. The density tended to decrease when NaOH concentration was increased as shown in Figure 2 (square line). When NaOH concentration was adjusted to be 40, 200, 360, and 520 mM, the average diameters and lengths of 1-D ZnO nanostructures were 22.13, 25.22, 29.42, and 43.78 nm (Figure 2: circle line), and 142.13, 351.74, 605.76, and 2705.83 nm (Figure 2: diamond line), respectively. However, both of them could not be further increased when the concentration was over 520 mM.

The evolution of rod density, diameter, and length of the nanostructures could be explained by simulated results from Visual MINTEQ software as shown in Figure 3. Firstly, Figure 3(a) illustrated the concentrations of zinc-hydroxio species that were found in the aqueous solution before the formation of ZnO solid at 25°C. The results showed that the concentrations of Zn(OH)₂ and Zn(OH)₃ could be 40 mM NaOH were higher than that of other zinc-hydroxo species. When the concentration of NaOH was increased, the concentration of Zn(OH)₂⁺ was also increased, but Zn(OH)₃⁻ and Zn(OH)₄⁻ concentrations were decreased. The increase of OH⁻ while the concentration of Zn²⁺ is limited, causes the increase of Zn(OH)₃⁻ because the preferred coordination number for Zn²⁺ is 4 [21]. The increase of Zn(OH)₂⁺ might mainly influence the decrease of saturation index due to less equilibrium constant K for producing ZnO (s) from Zn(OH)₂⁺ comparing to the other two species as shown in the Table 1. As a result of decreasing the saturation index S, the change in Gibbs free energy \(\Delta G \) for the formation of ZnO was increased as shown in the equation below [22-23]. This affected the decrease of nucleation number of ZnO nuclei leading to a lower rod density of nanostructures.
The nucleation and growth mechanism of 1-D ZnO nanostructures could be explained by the comparison between the morphology of nanostructures and the concentrations of zinc-hydroxo species in the solution before forming ZnO (s). After the formation of zinc-hydroxo species, each species was competitive each other to form both ZnO nucleation on the seed layer and precipitation into the solution as shown in the chemical reaction (11-13) when the temperature of the solution was increased from room temperature to 90°C.

\[
\begin{align*}
\text{Zn(OH)}_2 & \rightarrow \text{ZnO} + \text{H}_2\text{O} \\
\text{Zn(OH)}_3^+ & \rightarrow \text{ZnO} + \text{H}_2\text{O} + \text{OH}^{-} \\
\text{Zn(OH)}_4^{2-} & \rightarrow \text{ZnO} + \text{H}_2\text{O} + 2\text{OH}^{-}
\end{align*}
\]

Zn(OH)_2 and Zn(OH)_3^+ have less stable and more potential to form ZnO nuclei than Zn(OH)_2^2-. As a result, the supersaturation level of solution and rod density of ZnO were suddenly decreased with increasing NaOH concentration due to the decrease of Zn(OH)_2 and Zn(OH)_3^+ concentrations. After the nucleation process, Zn(OH)_2^2- played an important role to further grow the nanostructure on the nucleation layer at 90°C [24]. Thus, the diameter and length of nanostructures were increased due to the increase of Zn(OH)_2^2- concentration in solution. However, when the concentration of NaOH was increased to 680 mM, 1-D nanostructure might have more other solid phases [25], and the dimension of the nanostructure tended to be decreased.

% Transmittance spectra of 1-D ZnO nanostructures were shown in Figure 4(a). % Transmittance spectra in the visible region of all concentrations except 520 mM NaOH were higher than 70% and rapidly decreased at the wavelength of ~370 nm or below due to the absorption of ZnO. However, ZnO nanowire layer at 520 mM NaOH has very low transparency because of very high thickness, low uniformity, and low crystallinity. According to the transmittance at each wavelength, an absorption coefficient \(\alpha \) could be calculated using the equation below [11]:

\[
\alpha = \left(\frac{1}{d}\right) \ln(1/T)
\]
Figure 3. Concentration of (a) zinc-hydroxo species, (b) hydroxide ion and NaOH (aq) in aqueous solution, (c) saturation index of solution before forming ZnO (s) at 25°C, and (d) the concentration of zinc-hydroxo species after the formation of ZnO at 25°C and 90°C (inset) with different concentrations of NaOH simulated by using Visual MINTEQ software.

Figure 4. (a) % Transmittance spectra and (b) Tauc plot of 1-D ZnO nanostructures grown by hydrothermal method with different concentrations of NaOH. Where T and d are the transmittance and thickness of the ZnO layer, respectively. The absorption coefficients were used to display a Tauc plot for the determination of the optical bandgap of ZnO as followed by the equation below [11]:

\[(\alpha h\nu)^{1/n} = B(h\nu - E_g)\]

(15)

Where \(h\nu\) is the photon energy, \(B\) is the constant, \(E_g\) is the optical bandgap, and \(n\) of ZnO is \(1/2\) for the direct allowed band. Figure 4(b) presented the Tauc plots of 1-D ZnO nanostructures, and the optical bandgap was then determined from each concentration of NaOH. The bandgaps of ZnO at 40, 200, 360, and 520 mM NaOH are 3.336, 3.410, 3.327, and 3.131 eV, respectively as shown in Figure 5. This might be affected by larger dimension of nanostructures and stress happened inside the nanorods due to mechanical bending [26-27].
4. Conclusions

One-dimensional ZnO nanostructures could be grown on ZnO seed layer by hydrothermal method. The morphology of the nanostructures was changed from nanorods to be nanowires by controlling the concentration of zinc hydroxo species in the solution that affected the nucleation and growth modes. Higher Zn(OH)$_2$ and Zn(OH)$_3$ at lower NaOH concentration led to higher degree of supersaturation of the solution that caused higher amount of ZnO nuclei. When NaOH concentration was increased, it resulted in the increase of Zn(OH)$_2$ concentration leading to larger diameter and longer length of ZnO nanostructures. The optical property of the nanostructures also depended on the morphology controlled by the species in solution.

Acknowledgements

This research was financially supported by Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT) and by Science Achievement Scholarship of Thailand (SAST).

References

