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1. Introduction  
 
    The physical properties of technologically 
important materials originate in the reactions and 
processes to which they are subjected. In these 
materials, the atomic diffusion plays a key role 
because it is relevant to the kinetics of many 
microstructural changes occurring during 
preparation, processing and thermal treatment of the 
materials previously mentioned.  
    For example, there is currently a theoretical 
interest in superalloys, which have applications 
ranging from aircraft turbine engines to high speed 
drill bits. Specifically, for superalloys, it is sought 
to understand the different mechanisms of diffusion 
occurring through their respective volumes. 
Superalloys, such as FeAl, are interesting materials 
because they are resistant to high temperatures, 
maintain their structural and surface stability; 
besides, under high tensions and severe 
environments, their physical properties are majorly 
unchanged [1]. Superalloys are often rich in at least 
one of the following components: iron, nickel, 
cobalt, titanium and niobium.  
    The mechanical properties of superalloys are 
mainly determined by the microstructure acquired 
during the processing of the alloy. This 
microstructure can be greatly affected by changing 
the process variables such as alloy composition, 
temperature and annealing time. In many crystalline 

materials, the basic process of diffusion 
corresponds to the exchange of positions between a 
vacancy and a neighbouring atom.  
    Whereas atomic diffusion is well understood in 
simple metals, it is still not well comprehended in 
the B2-ordered intermetallic alloys [2-4]. The B2 
structure, also called CsCl, has a body-centred cubic 
lattice and is of great attention scientific as well as 
technological [5]. Consequently, it is important to 
focus on the diffusion in the AB intermetallic with 
a crystal structure B2, whose components have an 
electronic structure so that A belongs to column 
VIIIA and B, to column IIIB (FeAl, CoGa). 
Particularly, herein we will investigate the FeAl 
alloy.  
    Despite the diffusion mechanism in the B2 phase 
is still controversial, it is accepted that the diffusion 
proceeds via the vacancy migration. The more 
reliable experimental information so far was 
achieved by using quasi-elastic Mossbauer 
spectroscopy (QEMS), which gives access to the 
individual jump vectors after a suitable modelling 
[6-9]. 
   From experiments in ordered FeAl, it is 
commonly accepted that both diffusion occurs via 
jumps to the nearest neighbours (NNs) and the long-
range order (LRO) is not altered during the vacancy 
migration. All this has encouraged some authors to 
suggest that atomic diffusion concretely results 
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from the sequence of highly correlated jumps of the 
vacancy. Consequently, two major categories of 
mechanisms have been proposed to explain how the 
energy barriers operating against diffusion can be 
overcome, without altering the LRO in the type-B2 
ordered alloys.  
    The first type of mechanism involves jumps to 
the next-nearest neighbours (NNNs). For instance, 
Donaldson et al. studied the diffusion of the nickel 
atoms in the B2 compound NiGa; Lutze et al., the 
diffusion of 114In in the B2 compound NiAl; and 
Hahn et al., the self-diffusion in the B2 intermetallic 
compound PdIn [10-12]. The second type of 
mechanism refers to cyclic movements wherein the 
atoms make a series of jumps to the NNs following 
a defined path. Typical examples are the six-jump 
cycle (6JC) [13-14], the anti-structure bridge 
mechanism [15], the triple-defect diffusion 
mechanism [16-18] and the 6JC assisted by antisites 
[19]. Likewise, several mechanisms additional to 
the 6JC have been postulated to describe the 
diffusion in the B2 intermetallic compounds. 
However, most of those mechanisms, relevant to 
more complex alloys containing many point 
defects, are non-stoichiometric and are partially 
ordered [13,16,19]. 
 
2. Theoretical framework 
 
2.1 Theory of diffusion 
 
    It is a process that can occur in two different 
ways. The first one is called transport diffusion, 
which occurs in the presence of a gradient of 
molecular concentration. That is, there is a net flow 
of matter, provoked by the random motion of atoms 
(and molecules), what results in a drop of the energy 
of the system. This flow is more frequent from a 
region of high concentration (high energy) to a 
region of low concentration (low energy). The 
process of diffusion will continue until the total 
energy of the system is minimized, resulting in a 
uniform distribution of atoms. A typical example of 
the use of diffusion occurs during the manufacture 
of semiconductors, which are required by the 
electronics industry.  
    The second one is called self-diffusion or tracer 
diffusivity, which doesn't constitute itself a net flux 
of matter. Tracer diffusivity occurs when labeled 
molecules move within a set of unlabeled 
molecules, all of them having identical properties; 
furthermore, we must point out that the overall 

concentration must be necessarily a constant value 
(overall concentration includes labeled and 
unlabeled molecules) [20,21]. Likewise, it should 
also be taken into account that the diffusivity of the 
labeled and unlabeled molecules depend on the total 
concentration and not on the number of labeled 
molecules. Usually, the labeled molecules, also 
known as tracers, are the isotopes of the atoms or 
molecules being studied. Besides, the pulsed-field 
gradient NMR can be used to experimentally 
measure self-diffusion. Even more, by using 
atomistic simulations along with the Einstein 
relation, see Eq. (6) below, self-diffusion can be 
calculated. Additionally, we also can affirm that, in 
a homogeneous material, self-diffusion is 
complicated to detect because of random movement 
of atoms; consequently, the number of atoms 
moving in any direction is equal. 
    The equations governing the atomic motion, 
which is characterized by the J flow, are the Fick's 
laws [22]. These laws represent a continuous and 
purely phenomenological description of the process 
of diffusion. The derivation of Fick's laws relies on 
continuous diffusion equations; however, Fick's 
laws can also be obtained from atomistic random 
jump models, namely, by using the propagator as a 
connection to the continuous theory. Thus, for a 
porous solid, the transport diffusion coefficient, 
which appears in the Fick's first law, and the self-
diffusion coefficient, from the mean square 
displacement, coincide only at low concentrations 
of guest molecules. At this juncture, we want to 
thank two anonymous referees for contributing to 
better this paragraph as well as the two earlier. 
    The reactions and processes important in the 
treatment of alloys, which determine their 
microstructure, are based on the phenomenon of 
material transport. From a microscopic perspective, 
this phenomenon is only the staggered migration of 
atoms from one site in the material to another. In 
alloys, atoms are in constant movement, 
exchanging positions rapidly. These exchanges 
occur when two conditions are satisfied: a) There is 
an empty site adjacent to the atom; b) The atom 
must gain enough vibrational energy to break the 
bonds with its neighbouring atoms and, then, to 
cause some distortion of the lattice during its 
displacement [23]. 
    Also, it is useful to describe diffusion in terms of 
real atomic displacements, what is equivalent to 
allowing a particle to develop a random walk in 2 or 
3 dimensions. It is assumed that this particle has the 
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respective average value of any observable of the 
simulated system [24]. When a particle makes a 
two-dimensional random walk, it is assumed as 
follows: step sizes are equal, and movement in any 
direction has equal probability and is uncorrelated 
with previous jumps (our model deals with an 
isotropic and homogeneous material. However, it 
would be more complicated if we studied materials 
with a net of channels, for example). Likewise, 
there is a relationship between the diffusion 
coefficient and the random walk process described 
above [25].  
    The most important diffusion mechanisms 
occurring in metals are interstitial diffusion, 
vacancy diffusion and ring diffusion; in alloys, the 
dominant are the vacancy diffusion and the 
interstitial diffusion [26]. 
 
2.2 Model and methodology of the simulations 
 
    We will use the Kinetic Monte Carlo method, 
which will be detailed below. Now, we want to 
point out that the term Monte Carlo method really 
represent a group of computational algorithms in 
which the exact dynamic behaviour of any 
phenomenon or system is replaced by a stochastic 
process, i.e., the system performs random walks in 
the configuration space [27-28]. If the initial state is 
an arbitrary configuration, then each state has 
assigned a definite probability; besides, the system 
reaches equilibrium after a certain number of steps 
in the configuration space and the obtained average 
values are the ones over several configurations. The 
Metropolis algorithm can be used to generate 
samples of representative configurations, wherein 
the probability of occurrence of a particular 
configuration is proportional to the Boltzmann 
factor [27-28].   
    Usually, the Monte Carlo method is applied to 
molecular systems as follows: to predict average 
values of observables representing properties of 
structures in a thermal environment; to estimate the 
distribution of charges in molecules; and to 
calculate kinetic constants of a chemical reaction, 
free energies, dielectric constants, coefficients of 
compressibility, heat capacities and phase transition 
points, etc. 
 
2.3 Kinetic atomistic model 
 
    We will consider a rigid BCC lattice with 
periodic boundary conditions, which are to avoid 

border effects. Specifically, we use the B2 structure, 
which is composed of two interpenetrating simple 
cubic sublattices, each of which has only one type 
of atom occupying its nodes [23].   
    For computational efficiency, we will use two 
Cartesian coordinate systems to determine the 
position of the nodes of the BCC lattice, which 
consists of N sites (N = 2L3 and L = 100). Each 
coordinate system will establish the position of the 
nodes of each simple cubic sublattice and will be 
separated by the vector a(0.5,0.5,0.5), where a  is 
the dimension of the BCC unit cell. The binary alloy 
consists of NA atoms A, NB atoms B and one 
vacancy; specifically,  N  =  NA + NB + 1  and  NA  
= NB + 1.   
    Taking into account the model used, respectively, 
by Kim and Lim, we consider pair interaction 
energies between atoms located in close 
neighbouring sites [29-30]. These energies are 
symbolized 𝜀𝜀𝑋𝑋𝑋𝑋𝑖𝑖 , where  X  and  Y  stand for  A  or  
B, and i = 1 and 2  for the NNs and the NNNs, 
respectively.  
    We will neglect phantom interactions between 
atoms and vacancies; these interactions are 
sometimes introduced to weigh up the strength of 
chemical bonds of the atoms having lower 
coordination numbers [31]. With the residence time 
algorithm (RTA) described below, it can be shown 
that the phantom interactions will not change the 
path of the vacancy, but only the residence (stay) 
time in each state. The diffusion of the A and B 
atoms occur by means of thermally activated 
exchanges of the position of the atoms (A or B) with 
the vacancy (V). According to the theory of rate, the 
frequency of an exchange X-V (where X = A or B) 
is 
 

             (1)
 

 
where ν is the attempt-to-escape frequency [32]; k, 
the Boltzmann constant and T, the temperature. The  
𝐸𝐸XVact activation energy is calculated by using the 
broken-bond model: 
 

            (2) 

 
𝐸𝐸𝑋𝑋Vact  is the energy needed to extract the X-V pair 
from their surroundings and take the X-atom to a 
saddle point position, where its interaction energy 
with the system is Es [33]. The sum in Eq. (2) 



 

 

CASTILLO, E. V. M. and NAVARRO, F. A. R. 

J. Met. Mater. Miner. 28(1). 2018 
 
 

42 

extends over all atoms in the  i-th coordination 
sphere of the  X-atom. For the sake of simplicity, 
we will take ν and Es as being constants. At a given 
temperature, the value of Es only contributes to 
define the absolute time scale.   
    If we make  
with Zi being the coordination number of the  i-th 
coordination sphere, then the activation energy can 
be rewritten as   
 

           
(3)

 
 
where (X,Y) =  (A,B)  or  (B,A);   
stands for the i-th ordering energy, and  

, the i-th asymmetric energy;   
ϴA  = -1  and  ϴB  = 1; 𝑛𝑛𝑋𝑋i  and  𝑛𝑛𝑋𝑋i  are the numbers 
of atoms of type  X  and  Y  in the  i-th coordination 
sphere around the site occupied by the  X-atom that 
will be exchanged with the vacancy. Eq. (3) clearly 
demonstrates that not only the ordering energies but 
also the asymmetric energies control the kinetics of 
the alloy.   
     We assume that the attempt-to-jump frequency, 
ν, which is derived from the theory of kinetic rate, 
is 1. This value does not affect any details of the 
kinetic Monte Carlo simulation (it simply scales the 
relative magnitudes of the jump amplitudes by a 
constant factor); however, in calculating the total 
simulation time (in physical seconds), it is 
necessary. The value of ν is typically large (e.g. 1014 
Hz) so that the approximate physical time can be 
obtained by dividing the number of Monte Carlo 
steps by 1014. Since a run is  106,  107,  108  or  109  
Monte Carlo steps, we can assume that the true 
physical time is of the order of  10-5,  10-6,  10-7 or  
10-8 physical seconds.    
    At considering interactions between the NNs 
only, this model has been successfully used to 
reproduce both the kinetics of the precipitation of 
copper in BCC iron and the kinetics of ordering and 
precipitation in the B2 structures [34-35]. With the 
last type of interactions, the equilibrium phase 
diagram of a binary alloy exhibits a second-order 
transition line A2-B2 separating two single-phase 
regions, and a critical temperature TC ̴ 0.80 ε/k for 
the  A50B50 system, with  ε = ε AA + ε BB - 2εAB [36].   
    For the ABV alloys, as discussed here, in 
principle, the ordering energies need to be defined 
for each of the three binaries. As usual, we do not 
consider phantom interactions and obtain only three 
ordering energies ε, εAA and  εBB. For compositions 

close to the AB binary alloy, it has been 
demonstrated that the thermodynamic properties are 
determined only by ε and the ordering energy 
difference, u = εAA - εBB, for the AV and BV binaries 
[35].  
    For practical purposes, the studied systems are so 
highly diluted with respect to vacancies that the 
effect of u on the position of the order-disorder 
transition line can be safely neglected. In such a 
case, TC is the same as that of the AB binary alloy. 
In our research, with interactions up to the NNNs, 
our model system presents a transition between the 
A2 and B2 phases and at low temperatures, a two-
phase region A2 + B2. In concordance with previous 
simulations of the FeAl alloy, we will use the 
parameters (ε1,ε2,u1,u2) = (0.03,-0.04,-0.04,0) eV 
[35,36]. For the A50B50 composition, TC was found 
to be 1175 K. 
 
2.4 Residence time algorithm 
 
    Since we are interested in kinetic studies, 
especially at low temperatures, this algorithm is 
appropriate for such studies [38-40]. The classical 
Monte Carlo algorithms are used to characterize the 
equilibrium properties of a system [42-43]. 
Nowadays, it has been demonstrated equivalence 
between the RTA and the Metropolis algorithm 
[44].  
    In searching to improve the computational 
efficiency, Young, Lanore, and Bortz et al. 
introduced and developed the RTAs [38,39,44]. 
These authors applied these procedures to explain 
the diffusion of vacancies, the microstructural 
evolution under irradiation and the Ising model with 
spin changes (n-foldway algorithm), respectively. 
In the RTAs, every attempt to reach a new 
configuration is successful, but the time elapsed 
before it occurs is not constant.   
    For all the corresponding computer simulations, 
since diffusion measurements are averaged over a 
very large number of vacancy jumps, we could use 
a variable residence time    or a mean 
residence time. Thus, hereafter, we will use the 
latter. 
 
3. Results and discussion 
 
    Our simulated system is similar to the FeAl alloy, 
which exhibits a three-phase behaviour: an ordered 
phase B2, a disordered phase A2 and a mixed phase 
A2 + B2. Specifically, we studied the A50B50 alloy. 
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The simulation space is composed of three species: 
the A-atoms, the B atoms, and the V vacancy. The 
A and B atoms can diffuse through the simulation 
space via interaction (or exchange movement-s) 
with the vacancy. To obtain a two-phase region 
A2+B2, at low temperatures, we use the interactions 
up to the sphere of the NNNs [36]. As mentioned 
above, the parameters employed are  (ε1,ε2,u1,u2) =  
(0.03,-0.04,-0.04,0) eV [35]. With these values, by 
using the kinetic Monte Carlo method and the grand 
canonical ensemble, Athènes, Bellon and Martin 
replicated the phase diagram of FeAl [35]. For the 
A50B50 composition, they found TC = 1175 K as well 
as a tricritical temperature Ttric = 690 K.   
    We have used periodic boundary conditions to 
avoid border effects; we also consider that one type- 
B atom is eliminated to create one vacancy; and we 
also use a total number of nodes N = 2 x  106. All 
dynamics was introduced through the movement of 
the vacancy, and only jumps to one of the eight NNs 
were allowed. The degree of order of the system 
was monitored by means of the LRO parameter and 
the SRO parameter (SRO means short-range order).    
    In the simulation of this system, we consider that 
B2 is a BCC lattice formed by two interpenetrating 
simple cubic sublattices α and β; the B2 perfect 
order consists of the former occupied by the  A-
species whereas the latter, by the  B  species. The 
LRO parameter is defined thus: 
 

          (4)
 

 
where Si and  Sj  are the spin variables at  ri and  rj, 
respectively. Likewise,  Si can take three values: +1, 
-1, and 0 when the  i-th position of the lattice is 
occupied by an atom  A, an atom  B, or a vacancy  
V, respectively; the same for  Sj.    
    To define the SRO parameter, we take a reference 
atom  A, examine the  i-th shell around it, then the 
𝑝𝑝𝐴𝐴𝐴𝐴𝑖𝑖  probability to find different atoms  B  within 
that shell is divided by the  cB total concentration of 
the  B  atomic species.  𝑝𝑝𝐴𝐴𝐴𝐴𝑖𝑖  can be interpreted as the 
proportion of the  B  atoms in the  i-th coordination 
sphere relative to an arbitrary atom  A, averaged 
over all the  A-atoms in the lattice. This parameter 
is known as the Warren-Cowley SRO parameter: 
 

              
(5)

 
 

where i = 1,2. The random atomic distributions 
correspond to αi null, because 𝑝𝑝𝐴𝐴𝐴𝐴𝑖𝑖 , the probability 
of finding pairs  A-B, is  cB. For each temperature T 
we studied, it was first necessary to obtain the 
equilibrium state of the alloy at T. This was 
achieved by comparing two systems that evolved 
simultaneously, one of them initiating its 
thermalization from the completely ordered state (a 
perfectly ordered lattice) and the other from a 
completely disordered state (a lattice with a random 
distribution of atoms). When both systems reach the 
same order parameter, in particular LRO, we 
consider that the equilibrium state was reached at 
the respective temperature. Afterwards, we proceed 
with all convenient measurements for the alloy, 
which is in its macroscopic steady state. In Figures 
1a and 1b, we show the earlier explained procedure 
for T = 550 K, where SRO = α1. This way we 
obtained the phase diagram in the LRO vs. T  plane 
(Figure 2). 
 

 
 
Figure 1. Ordering process seen through the temporal 
evolution of the LRO and SRO order parameters. 
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Figure 2. Phase diagram of the LRO equilibrium 
parameter as a function of the  T  temperature. 
 
3.1 Tracer diffusion coefficient 
 
    Formally, this parameter is determined through 
the calculation of the mean square displacements of 
the tracer atoms [46]. The vacancy diffusion 
coefficient was calculated by 
 

             
(6)

 
 
where 𝑅𝑅𝑉𝑉2 denotes the mean square displacement of 
the vacancy after a time t [47]. Since all the  A(B) 
atoms can be individually viewed as tracers, the  
DA(B) tracer diffusion coefficient was calculated in 
the same way: 
 

        
(7)

 
 
    The measured values of the mean square 
displacements were averaged over 60 independent 
simulations.  
    Contrary to the Metropolis standard algorithm, 
wherein the efficiency falls at low temperatures, with 
the kinetic RTA the vacancy performs a jump to a 
close neighbour in every attempt, i.e., in each Monte 
Carlo step the vacancy makes a jump. For this reason, 
we define the unit of time as each jump the vacancy 
makes and we call it dtu (dimensionless time unity).  
    Concerning to the mean square displacement and 
the autocorrelation function, there are earlier 
evidences that the time required to obtain 
measurements is inversely proportional to the 
temperature at which the simulation was performed 

[37]. This occurs because the vacancy is trapped 
around a lattice node, i.e., the vacancy made reversals 
constituted by two consecutive jumps each other. 
Then, many reversals can occur around a lattice site; 
however, after a long time, longer when lower is the 
temperature, the vacancy visits another region of the 
alloy. Fortunately, these reversals do not happen often 
at moderate and high temperatures. Besides, the 
atomic diffusion coefficient, DA, can be determined 
below and above  TC, the critical temperature; the 
values for  Ln(DA)  can be adjusted by two straight 
lines as a function of 1/T for temperatures above and 
below  TC; the Arrhenius graph changes its slope at  TC.  
    Therefore, in the Arrhenius equation 

, if we take the logarithm of both 
sides, we have  . E. 
Manrique  et al. made a least squares fitting for the 
Arrhenius plot (Ln(D) vs. 1/T) [37]. Specifically, they 
found that  𝐸𝐸Aact  in the ordered phase (0.42 eV) is 
higher than  EA act in the disordered phase (0.12 eV). 
These values agree with experimental results [48].   
    In Figure 3, we show Ln(f) vs. 1/T, where f  stands 
for the  (N-1)DA/DV ratio. The data are fitted to two 
straight lines above and below TC. Over TC, f  
approaches the BCC lattice correlation coefficient  
fBCC = 0.727, which means that the system behaves 
like a conventional BCC lattice [49]. Below TC the 
lower temperature, the higher values of  f; besides, the 
values of f are greater than 1. This fact can be 
explained if the vacancy makes highly correlated 
jumps, i.e., via the 6JC. This is consistent with the 
results of Mishin, who found that in a system B2, NiAl 
at low temperatures, the 6JC is the main responsible 
for the atomic migration [50].   
 

 
 

Figure 3. Arrhenius graphs of the logarithm of the 
ratio between atomic diffusivity and diffusivity of the 
vacancy vs. the inverse temperature.  
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3.2 Movement of the antiphase boundaries 
 
    We will also study the antiphase boundary 
movement in the last stages of the ordering process 
after quenching. The initial state is the one completely 
disordered at a very high temperature, in theory T = ∞. 
After quenching below TC the long range order is 
developed by nucleation and growth of ordered 
domains. In the last stages, the system consists of a 
lattice of domain walls separating ordered regions.    
    This quenching process is shown in Figure 4, where 
the evolutive sequence for  T = 350  K displays the 𝜂𝜂𝑖𝑖2 
field (see Eq. (11)) in the real space and the structure 
factor in the reciprocal space, for 1.1 x 106, 9.8 x 108 
and 1.9 x 109  dtu. The A2 and B2 phases appear as 
dark and bright regions, respectively. 
    The structure factor is defined as usual  
 

           
(8)

 
 
    To define the B2 field of order 𝜂𝜂𝑖𝑖, we consider α 
and β to be two simple cubic sublattices required to 
describe the B2 symmetry. In turn, either are 
subdivided into two FCC sublattices:  α into  α1  and  
α 2, and  β into  β1 and β 2. We also use the atomic 
occupation function 
 

           

(9)

 
 
    Around a site  i, we define a cell  Ωi  formed by 
the site itself, and its eight NNs and its six NNNs. 
The 𝜂𝜂𝑖𝑖

𝜈𝜈𝑗𝑗 partial order, in a site i with respect to the  
𝜈𝜈𝑗𝑗  sublattice, is then given by 
 

 
        

(10)

 
 
where  𝑁𝑁𝑖𝑖

𝜈𝜈𝑗𝑗 is the number of sites in  𝜈𝜈𝑗𝑗 ∩ 𝛺𝛺𝑖𝑖. Then, 
the B2 field of order is defined as 
 

             

(11)

 
 
    Besides, we consider that the S surface of the 
antiphase frontier, at an instant  t, is proportional to 
SRO∞ - SRO(t), which is a good approximation [51]. 

Since the volume of the ordered domains is roughly 
constant and, in a first approximation, equal to the 
size of the system in this regime, S is correlated with 
the R average domain size via  S ∝ 1/R. For a binary 
alloy undergoing an order-disorder transition, for 
the mean square displacement (R), Allen et al. 
proposed this law of growth: 
 

                   
 (12)

 
 
where x = 1/2 and M denotes the mobility of the 
antiphase boundary [52]. Then, we expect to find 
the following relationship: 
 

           (13) 
 

 
 
Figure 4. System evolutive sequences in the real space 
(corresponding to a section perpendicular to (100)), left, 
and in the reciprocal space (in the plane (100)), right. The 
times are (a) 1.1 x 106  dtu,  (b) 9.8 x  108 dtu, and  (c) 1.9 
x  109 dtu.  
 
    Figure 5  shows  [SRO∞ - SRO(t)] vs. t-1/2; therein, 
a linear regime is observed over a long period of 
time; it is higher when lower is the quenching 
temperature and is interpreted as the growth regime 
(coarsening). The fitting line for this regime 
obviously goes through the origin when t→∞. Since 
all points not belonging to the coarsening regime are 
on the fitting line for the regime, then we will 
calculate the mobility of the minimum value of  
[SRO∞ - SRO(t)]t1/2. Consequently, for 350 K, in 
Figure 6a we have  [SRO∞ - SRO(t)] vs. t-1/2 and in 
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Figure 6b, the minimum value used for calculating 
the mobility of the antiphase boundary as a function 
of  t-1/2, too.  
    In Figure 6b, the obtained values result from the 
average of 60 independent simulations; we exclude 
the very low values of the equilibrium LRO 
parameter, what is typical of systems having 
competing domains. 
    Figure 7 shows the Arrhenius graph of Log(M) 
vs.  1/T. The temperature range is restricted to 

values lower than TC because the antiphase 
boundaries only exist for these values. We found 
out that the activation energy for the movement of 
the antiphase boundaries is 0.17 eV. This small 
value is explained if the vacancy is restricted to 
moving mainly in disordered regions; so, there is no 
significant change in its environment before and 
after the jump, therefore, it does not need much 
energy for its migration. In short, the vacancy 
moves mainly around the antiphase boundaries, 
which are disordered regions. 

 

 
 

Figure 5. Deviation of the SRO parameter from its equilibrium value vs. t-1/2, for various temperatures.  
 

 
 
Figure 6. At 350 K, (a)  deviation of the SRO parameter from its equilibrium value vs. t-1/2;  (b)  Minimum value 
of [SRO∞ - SRO(t)]  averaged over 60 independent simulations.  

(a) 

(b) 
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Figure 7. Arrhenius graphs of the logarithm of 
mobility vs. the inverse temperature. 
 
3.3 Measurement of the autocorrelation 
function  
 
    Whereas the tracer diffusion experiments allow 
indirect evidence on elementary diffusion jumps 
[53], direct evidence can be obtained from QEMS, 
quasi-elastic neutron scattering, and forward-
scattered resonant synchrotron radiation [54-56]. 
These experiments typically measure the 
autocorrelation function of a labelled atom in the 
alloy.  
    The autocorrelation function, after a time t, gives 
information of a labelled atom initially located at 
the origin. It has recently been inferred from QEMS 
experiments for the type- B2 alloy FeAl that the iron 
atoms actually jump between nodes of their own 
sublattice [57-58]. These jumps are mostly to the 
next-next-nearest neighbours (NNNNs) and partly 
to the NNNs. At intermediate temperatures, QEMS 
also provides evidence that the jumps are a 
combination of two jumps to the NNs.  
    Figure 8 shows the probability of finding an atom  
A, located at the origin in  t = 0, in the  n-th 
coordination sphere in a time t. In the simulation, 
since the program source code monitors the 
displacement vector of all the atoms, including the 
vacancy, at each t, the autocorrelation function is a 
function of time. Then, to obtain the autocorrelation 
function, we count the atoms of the same type (A  or  
B) with equal total displacement (with the same 
modulus of the displacement vector), i.e. the atoms 
within the same coordination sphere.  
    Also in Figure 8, it is observed that after a time 
of 3 x 109 dtu, 90% of the A-atoms did not move, or 
if they did so, they finally returned to their starting 
point (the corresponding origin of coordinates); this 
because, by definition, all the A-atoms are located 

in the shell zero at t = 0 dtu. The first coordination 
sphere is empty, meanwhile the remaining 10% of 
the A-atoms are hosted in the second and third 
shells of closer neighbours. This fact is important 
because 10% of the A-atoms move through the 6JC 
(after the 6JC has been completed, the crystal is 
again ordered and the vacancy has migrated to a 
NNN or a NNNN). Therefore, at T = 350 K, 10% of 
atoms A have performed at least one 6JC. This 
conclusion is supported by Mishin, who using 
computational simulation found that, at low 
temperatures, the 6JC is the main responsible of the 
atomic migration in the NiAl alloy [50]. 
Furthermore, according to Figure 8, there is a 
preference for jumps to the NNNs over the jumps to 
NNNNs, with a relative probability 2, which is 
independent of time, after  t  = 1.5 x 109 dtu.  
 

 
 
Figure 8. Autocorrelation function of the A-atoms, in 
several times at 350 K. Numbers 1, 2, ..., 6 indicate 
time instants  τ, 2τ, ...,  6τ, respectively, where  τ  = 5  
x  108 dtu.  
 
    Since the first coordination sphere is empty all time 
and, on the contrary, the second and third coordination 
sphere are always occupied, then there are two 
possibilities: 1) the vacancy performs the 6JC; 2)  the 
vacancy jumps to the NNNs or to the NNNNs.   
    From the aforementioned QEMS experiments of 
B2-FeAl, we conclude that the (iron) A-atoms jump to 
sites of their own sublattice (to the NNNs and NNNNs 
shells), via the combination of 2 jumps to the NNs. 
Consequently, an iron atom occupies for a brief time 
an antistructure site in the sublattice of aluminium.  
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Figure 9. Autocorrelation function of the A-atoms, at various times at 850 K. Measurements were taken after time 
intervals of 5 x 107 dtu.  
 
    In Figure 9a, we have the autocorrelation function 
of the A-atoms at different times at 850 K and in which 
measurements were taken after each 5 x  107 dtu; 
therein, we observe that the  A-atoms jump to sites of 
their own sublattice (to the second and third shells of 
closer neighbours) via the combination of 2 jumps to 
the NNs. It results in a brief time of occupation of an 
antistructure site in the aluminium sublattice. We 
arrive at this conclusion by means of the same 
reasoning performed for the autocorrelation function 
of the A-atoms for T = 550 K. However, this behaviour 
corresponds to a very small fraction of the A-atoms, 
which decreases over time; in the final stage, this 
fraction becomes, after 1.5 x 108 dtu, around 4.5% of 
all the A-atoms. Besides, 95% of the A-atoms have 
migrated to the eighth or greater coordination spheres.  
    In Figure 9b, we observe that the A-atoms carry out 
practically random walks, i.e. the vacancy visits each 
region of the lattice with the same frequency, and its 
movements are uncorrelated or very low correlated, 
i.e., there are no jumps of the vacancy by the 6JC. 
After t = 3 x 108 dtu, almost 100% of the A-atoms have 
migrated to the eight or greater coordination spheres. 
 
4. Conclusions 
 
    To indirectly obtain information on atomic 
diffusion, we have used the measurement of the total 
mean quadratic displacement of the iron atoms in the 
FeAl alloy. Likewise, despite the residence time 
algorithm is more efficient than the Metropolis 
algorithm at very low temperatures, it was not efficient 
enough. This because, at these temperatures, it was 
necessary to use more simulation time to measure the 

mean square displacements. What can be explained by 
the fact that, at very low temperatures, the vacancy 
along its trajectory returned to the initial node from 
which it jumped to the next node; this phenomenon we 
call it reversion and occurred repeatedly involving the 
initial node. Reversion occurred throughout the 
volume of the model alloy during the displacement of 
the vacancy in the alloy. However, this was not the 
case at moderate and high temperatures; so, we 
conclude that the residence time algorithm is very 
efficient for these last temperatures.  
    The movement of the antiphase boundaries, during 
the last stages of the ordering process, was also 
studied. The excess energy of the alloy was 
concentrated at the antiphase boundaries, what is due 
to the fact that the vacancy moves, most of the time, in 
the disordered regions, i.e., around the antiphase 
boundaries.     Finally, we studied the autocorrelation 
function of the type-A atoms, what gives information 
of the position in time of a tagged atom. This function 
provides information, in a direct way, on elemental 
atomic jumps during diffusion; we found three 
regimes of atomic jumps. At low temperatures the 
main mechanism of diffusion is the 6JC. At moderate 
temperatures, the diffusion mechanism of the type-A 
atoms is the jump between positions within the 
sublattice, to the second or third coordination sphere; 
however, these jumps are not direct but by means of 
the combination of two consecutive jumps to closer 
neighbours. At high temperatures, but below and close 
to TC the main mechanism of diffusion is that in which 
the vacancy performs low correlated jumps, random 
walks, during its migration in the crystal. 
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