Graphitic carbon nitride loaded Bi\(_{4}\)O\(_{5}\)I\(_{2}\) for elevated photocatalytic tetracycline degradation

Authors

  • Subhasish MISHRA Department of Chemistry, I.T.E.R., Siksha ‘O’ Anusandhan deemed to be University, Bhubaneswar, Odisha 751030, India
  • Barsha MARANDI Hydro & Electrometallurgy Division, CSIR-Institute of Mineral and Materials Technology(IMMT), Bhubaneswar 751013, Odisha, India
  • Kali SANJAY Hydro & Electrometallurgy Division, CSIR-Institute of Mineral and Materials Technology(IMMT), Bhubaneswar 751013, Odisha, India
  • Rashmi ACHARYA Department of Chemistry, I.T.E.R., Siksha ‘O’ Anusandhan deemed to be University, Bhubaneswar, Odisha 751030, India

DOI:

https://doi.org/10.55713/jmmm.v35i2.2261

Keywords:

Keywords: g-C3N4, Bi4O5I2, heterojunction, Z-scheme, tetracycline, Photocatalysis

Abstract

As a robust photocatalyst, Bi4O5I2 have has attracted significant scientific interest owing to its narrow bandgap energy, escalated electronic properties and high stability. Nonetheless, the unfavourable band structure and higher recombination of excitons have restricted its diversified photocatalytic applications. In this context, binary heterojunction construction using Bi4O5I2 could be considered an effective strategy for spatial charge carrier separation across the hetero-interface, leading to an enhanced activity. In this study, we have prepared Bi4O5I2/g-C3N4 Z-scheme hetero-structures via a wet impregnation strategy that preserves the spherical structure of Bi4O5I2. The phase purity, chemical bonding, morphology and microstructure of the composite were confirmed using XRD, FTIR, SEM, TEM and HRTEM studies. The formation of robust 3D-2D contact junction triggers the charge separation and migration at the hetero-interface. Furthermore, the Z-scheme charge transfer dynamics helps to retain the redox ability of the excitons. As a result, The Bi4O5I2/g-C3N4 heterojunction composite exhibited 84.6% of tetracycline degradation within 60 min that is 1.8 and 2.7 folds higher than pristine Bi4O5I2 and g-C3N4, respectively. The findings of this study have major implications for building highly effective heterojunctions for upgraded photocatalytic applications.

Downloads

Download data is not yet available.

References

M. H. Firooz, A. Naderi, M. Moradi, and R. R. Kalantary, “Enhanced tetracycline degradation with TiO2/natural pyrite S-scheme photocatalyst,” Scientific Reports, vol. 14, no. 4954, 2024. DOI: https://doi.org/10.1038/s41598-024-54549-0

Z. Hu, Y. Wang, L. Wang, Q. Wang, Q. Zhang, F. Cui, and G. Jiang, “Synthesis of S-type heterostructure π-COF for photo-catalytic tetracycline degradation,” Chemical Engineering Journal, vol. 479, p. 147534, 2024. DOI: https://doi.org/10.1016/j.cej.2023.147534

L. Yang, Y. Liu, P. Tan, Y. Lu, Q. Ding, and J. Pan, “Anchoring TiO2@CsPbBr3 on g-C3N4 nanosheet for enhanced photocatalytic degradation activity of tetracycline hydrochloride,” Diamond and Related Materials, vol.133, p. 109727, 2023. DOI: https://doi.org/10.1016/j.diamond.2023.109727

K. khoirunisa, N. D. lestari, E. T. wahyuni, and T. A. natsir, “Enhanced photocatalytic reduction of Cr(VI) under visible light a magnetically separable TiO2-Fe/Fe3O4 photocatalyst prepared from iron rusty waste”, Journal of Metals, Materials and Minerals, vol. 35, no. 1, p. e2162, 2025. DOI: https://doi.org/10.55713/jmmm.v35i1.2162

S. Mishra, and R. Acharya, “Recent updates in modification strategies for escalated performance of graphene/MFe2O4 heterostructured photocatalysts towards energy and environmental applications,” Journal of Alloys and Compounds, vol. 960, p.170576, 2023. DOI: https://doi.org/10.1016/j.jallcom.2023.170576

R. Acharya, S. Mishra, and A. Naik, “Development of graphene-based photocatalysts for remediation of hexavalent chromium,” In: M.R. Johan, M.N. Naseer, M. Ikram, A. A Zaidi, Y. Abdul Wahab, (eds) Graphene-Based Photocatalysts. Advanced Structured Materials, vol 217, pp. 317-345, Springer 2024. DOI: https://doi.org/10.1007/978-3-031-66260-7_14

S. Mishra, R. Acharya, and K. Parida, “Spinel-ferrite-decorated graphene-based nanocomposites for enhanced photocatalytic detoxification of organic dyes in aqueous medium: a review,” Water, vol. 15, p. 81, 2023. DOI: https://doi.org/10.3390/w15010081

S. Li, C. You, F. Yang, G. Liang, C. Zhuang, and X. Li, “Interfacial

Mo–S bond modulated S-scheme Mn0.5Cd0.5S/Bi2MoO6 heterojunction for boosted photocatalytic removal of emerging organic contaminants,” Chinese Journal of Catalysis, vol. 68, p. 259, 2025. DOI: https://doi.org/10.1016/S1872-2067(24)60181-6

S. Li, K. Rong, X. Wang, C. Shen, F. Yang, and Q. Zhang, “Design

of carbon quantum dots/CdS/Ta3N5 S-Scheme heterojunction nanofibers for efficient photocatalytic antibiotic removal, Acta Physico-Chimica Sinica, vol. 40, p. 2403005, 2024. DOI: https://doi.org/10.3866/PKU.WHXB202403005

F. Chang, H. Chen, X. Zhang, B. Lei, and X. Hu, “n-p hetero-junction Bi4O5I2/Fe3O4 composites with efficiently magnetic recyclability and enhanced visible-lightdriven photocatalytic performance,” Separation and Purification Technology, vol. 238, p. 116442, 2020. DOI: https://doi.org/10.1016/j.seppur.2019.116442

H. Zhang, X. Zhang, Z. Zhang, X. Ma, Y. Zhu, and M. Ren, Y. Cao, and P. Yang, “Ultrahigh charge separation achieved by selective growth of Bi4O5I2 nanoplates on electron accumulating facets of Bi5O7I nanobelts,” ACS Applied Materials and Interfaces, vol. 13, pp. 39985-40001, 2021. DOI: https://doi.org/10.1021/acsami.1c06188

M. Ji, J. Di, Y. Liu, R. Chen, K. Li, Z. Chen, J. Xia, and H. Li, “Confined active species and effective charge separation in Bi4O5I2 ultrathin hollow nanotube with increased photo-catalytic activity,” Applied Catalysis B: Environmental, vol. 268, p. 118403, 2020. DOI: https://doi.org/10.1016/j.apcatb.2019.118403

Z. Shen, H. Liu, X. Jia, Q. Han, and H. Bi, “Phase transformation and heterojunction construction of bismuth oxyiodides by grinding-assisted calcination in the presence of thiourea and their photoactivity,” Dalton Transitions, vol. 50, p. 7464-7473, 2021. DOI: https://doi.org/10.1039/D1DT00745A

C. Shen, X. Li, B. Xue, D. Feng, Y. Liu, F. Yang, M. Zhang, and S. Li, “Surface plasmon effect combined with S-scheme charge migration in flower-like Ag/Ag6Si2O7/Bi12O17Cl2 enables efficient photocatalytic antibiotic degradation,” Applied Surface Science, vol. 679, p. 161303, 2025. DOI: https://doi.org/10.1016/j.apsusc.2024.161303

S. Li, R. Yan, M. Cai, W. Jiang, M. Zhang, and X. Li, “Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/ Bi2MoO6 S-scheme photocatalyst by carbon dot modification,” Journal of Materials Science & Technology, vol. 164, p. 59, 2023. DOI: https://doi.org/10.1016/j.jmst.2023.05.009

C. Wang, K. Rong, Y. Liu, F. Yang, and S. Li, “Carbon quantum dots-modified tetra (4-carboxyphenyl) porphyrin/BiOBr S-scheme heterojunction for efficient photocatalytic antibiotic degradation.” Science China Materials, vol. 67, p. 562, 2024. DOI: https://doi.org/10.1007/s40843-023-2764-8

R. Acharya, S. Pati, and K. Parida, “A review on visible light driven spinel ferrite-g-C3N4 photocatalytic systems with enhanced solar light utilization,” Journal of Molecular Liquids, vol. 357, p. 119105, 2022. DOI: https://doi.org/10.1016/j.molliq.2022.119105

R. Acharya, S. Mishra, L. Acharya, and K. Parida, “Graphitic carbon nitride (g-C3N4)-based photocatalysts for environmental applications,” In: N. Kumar, R. Gusain, Sinha S. Ray (eds) Two-Dimensional Materials for Environmental Applications. Springer Series in Materials Science, vol 332, p. 103, Springer 2023. DOI: https://doi.org/10.1007/978-3-031-28756-5_4

J. Xia, M. Ji, J. Di, B. Wang, S. Yin, Q. Zhang, M. He, and H. Li, “Construction of ultrathin C3N4/Bi4O5I2 layered nano-junctions via ionic liquid with enhanced photocatalytic performance and mechanism insight.” Applied Catalysis B: Environmental, vol. 191, p. 235, 2016. DOI: https://doi.org/10.1016/j.apcatb.2016.02.058

Z. Feng, L. Zeng, Q. Zhang, S. Ge1, X. Zha, H. Lin, and Y. He, “In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light” Journal of Environmental Sciences, vol. 87, p. 149-162, 2020. DOI: https://doi.org/10.1016/j.jes.2019.05.032

Q. Zhang, L. Wang, H. Peng, S. Jiang, X. Xu , J. Xu, and K. Xu, “Construction of g-C3N4/Bi4O5I2 heterojunction via the solvothermal method for the purification of eutrophic water,” Catalysis Communications, vol. 149 p. 106200, 2021. DOI: https://doi.org/10.1016/j.catcom.2020.106200

J. Low, C. Jiang, B. Cheng, S. Wageh, A. A. Al-Ghamdi, J. Yu, “A review of direct Z-Scheme photocatalysts,” small, vol. 1, p. 1700080, 2017. DOI: https://doi.org/10.1002/smtd.201700080

Y. Wang, Y. Ma, L. Chu, and X. LI, “In-situ embedding of nanocylindrical Bi25FeO40 into scaffold-C3N4 for enhanced Z-scheme photocatalytic degradation”, Journal of Metals, Materials and Minerals, vol. 34, no. 4, p. 2167, 2024. DOI: https://doi.org/10.55713/jmmm.v34i4.2167

S. Mishra, L. Acharya, B. Marandi, K. Sanjay, and R. Acharya, “Boosted photocatalytic accomplishment of 3D/2D hierarchical structured Bi4O5I2/g-C3N4 p-n type direct Z-scheme hetero-junction towards synchronous elimination of Cr(VI) and tetracycline,” Diamond and Related Materials, vol. 142, p 110834, 2024. DOI: https://doi.org/10.1016/j.diamond.2024.110834

R. Yin, Y. Li, K. Zhong, H. Yao, Y. Zhang, and K. Lai, “Multi-functional property exploration: Bi4O5I2 with high visible light photocatalytic performance and a large nonlinear optical effect,” RSC Advances, vol. 9, p. 4539, 2019. DOI: https://doi.org/10.1039/C8RA08984A

X. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang, W. Zhu, and T. Zhang, “Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting,” Nano Energy, vol. 59, pp. 644-650, 2019.

J. He, J. Hu, Y. Hu, S. Guo, Q. Huang, Y. Li, G. Zhou, T. Gui, N. Hu, X. Chen, “Hierarchical S-scheme heterostructure of CdIn2S4@UiO-66-NH2 toward synchronously boosting photo-catalytic removal of Cr(VI) and tetracycline,” Inorganic Chemistry, vol. 61, p. 19961-19973, 2022. DOI: https://doi.org/10.1021/acs.inorgchem.2c03240

X. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang, W. Zhu, and T. Zhang, “Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting,” Nano Energy, vol. 59, p. 644, 2019. DOI: https://doi.org/10.1016/j.nanoen.2019.03.010

O. Mehraj, B.M. Pirzada, N.A. Mir, M.Z. Khan, and S. Sabir, “A highly efficient visible light-driven novel p-n junction Fe2O3/BiOI photocatalyst: surface decoration of BiOI nanosheets with Fe2O3 nanoparticles,” Applied Surface Science, vol. 387, p.642, 2016. DOI: https://doi.org/10.1016/j.apsusc.2016.06.166

W. Zhang, H. He, H. Li, L. Duan, L. Zu, Y. Zhai, W. Li, L. Wang, H. Fu, and D. Zhao, “Visible-light responsive TiO2-based materials for efficient solar energy utilization,” Advanced Energy Materials, vol. 11, p. 2003303, 2021. DOI: https://doi.org/10.1002/aenm.202003303

H. Zhang, S. Tan, D. Wang, J. Wu, W. Xu, S. Zhao, X. Sun, Q. Liu, H. Liu, and Y. Guan, “Fabrication of bionic flower-like g-C3N4/Bi4O5I2 photocatalyst with enhanced photocatalytic performance,” Chemical Physics Letters, vol. 751, p. 137533, 2020. DOI: https://doi.org/10.1016/j.cplett.2020.137533

S. Mishra, L. Acharya, S. Sharmila, K. Sanjay, and R. Acharya, “Designing g-C3N4/NiFe2O4 S-scheme heterojunctions for efficient photocatalytic degradation of Rhodamine B and tetracycline hydrochloride,” Applied Surface Science Advances, vol. 24, p. 100647, 2024. DOI: https://doi.org/10.1016/j.apsadv.2024.100647

D. Huang, J. Li, G. Zeng, W. Xue, S. Chen, Z. Li, R. Deng, Y. Yang, and M. Cheng, “Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: Degradation pathways and mechanism,” Chemical Engineering Journal , vol. 375, p. 121991, 2019. DOI: https://doi.org/10.1016/j.cej.2019.121991

Y. Wu, X. Zhao, S. Huang, Y. Li, X. Zhang, G. Zeng, L. Niu,

Y. Ling, and Y. Zhang, “Facile construction of 2D g-C3N4 supported nanoflower-like NaBiO3 with direct Z-scheme heterojunctions and insight into its photocatalytic degradation of tetracycline,” Journal of Hazardous Materials vol. 414, p.125547, 2021. DOI: https://doi.org/10.1016/j.jhazmat.2021.125547

J. Yang, Z. Liu, Y. Wang, and X. Tang, “Construction of the rod-like Bi2O4 modificated porous g-C3N4 nanosheets heterojunction of photocatalysts for the degradation of tetracycline,” New Journal of Chemistry, vol. 44, p. 9725, 2020. DOI: https://doi.org/10.1039/D0NJ01922D

Y. Li, H. Zhang, D. Zhang, S. Yao, S. Dong, Q. Chen, F. Fan, H. Jia, and M. Dong, “Construction of Bi2WO6/g-C3N4 Z-scheme heterojunction and its enhanced photocatalytic degradation of tetracycline with persulfate under solar light,” Molecules, vol. 29, p. 1169, 2024. DOI: https://doi.org/10.3390/molecules29051169

D. Tan, F. Huang, S. Guo, D. Li, Y. Yan, and W. Zhang, “Efficient photocatalytic tetracycline elimination over Z-scheme g-C3N4/Bi5O7I heterojunction under sunshine light: Performance, mechanism, DFT calculation and pathway,” Journal of Alloys and Compounds, vol. 946, p. 169468, 2023. DOI: https://doi.org/10.1016/j.jallcom.2023.169468

J. Kang, Y. Tang, M. Wang, C. Jin, J. Liu, S. Li, Z. Li, J. Zhu, “The enhanced peroxymonosulfate-assisted photocatalytic degradation of tetracycline under visible light by g-C3N4/Na-BiVO4 heterojunction catalyst and its mechanism” Journal of Environmental Chemical Engineering, vol. 9, p.105524, 2021. DOI: https://doi.org/10.1016/j.jece.2021.105524

X. Zou, C. Li, L. Wang, W. Wang, J. Bian, H. Bai, and X. Meng, “Enhanced visible-light photocatalytic degradation of tetracycline antibiotic by 0D/2D TiO2(B)/BiOCl Z-scheme heterojunction: Performance, reaction pathways, and mechanism investigation,” Applied Surface Science, vol. 630, p. 157532, 2023. DOI: https://doi.org/10.1016/j.apsusc.2023.157532

H. Liu, W. Huo, T. C. Zhang, L. Ouyang, and S. Yuan, “Photo-catalytic removal of tetracycline by a Z-scheme heterojunction of bismuth oxyiodide/exfoliated g-C3N4: performance, mechanism, and degradation pathway,” Materials Today Chemistry, vol. 23, p. 100729, 2022. DOI: https://doi.org/10.1016/j.mtchem.2021.100729

Downloads

Published

2025-05-07

How to Cite

[1]
S. . MISHRA, B. . MARANDI, K. . SANJAY, and R. ACHARYA, “Graphitic carbon nitride loaded Bi\(_{4}\)O\(_{5}\)I\(_{2}\) for elevated photocatalytic tetracycline degradation”, J Met Mater Miner, vol. 35, no. 2, p. e2261, May 2025.

Issue

Section

Original Research Articles

Categories