Photodegradation of Malachite green using 2D g-C\(_{3}\)N\(_{5}\) nanosheet: A promising metal free catalyst
DOI:
https://doi.org/10.55713/jmmm.v35i2.2279Keywords:
Carbon nitride, Cationic dye, Water remediation, Advanced oxidation processesAbstract
Environmental issues have become more serious these days due to the growth of modern industries. The paper and textile industries, in particular, were heavily dependent on the printing and discharge of dye, which constantly leaked into the water ecology and constituted a serious risk to public health. Organic wastewater treatment and remediation for its associated risks have received a lot of attention lately. This work explored the potential of the g-C3N5 nanostructure as a novel photocatalyst for malachite green degradation in aqueous solution while exposed to visible light. The nanocomposite was fabricated through an ultrasonicate-assisted technique. A number of analysis techniques, such as CHNS, XRD, FTIR, UV-DRS, SEM, Electrical, and XPS were employed to verify the successful fabrication of the photocatalyst. At pH 6.5, the catalyst dose of 0.06 g∙L‒1, with malachite green concentration of 20 mg∙L‒1, and in a reaction period of 90 min, the degradation efficiency had been found to be 88%. The produced hydroxyl radicals (OH•) is considered to be major scavenger for degradation of malachite green. The above method suggested an easy, environmentally friendly and practical approach to produce excellent photocatalytic 2D g-C3N5 nanosheet for environmental cleanup.
Downloads
References
R. Jasrotia, Suman, A. Verma, R. Verma, S. K. Godara, J. Ahmed, A. Mehtab, T. Ahmad, P. Puri, and S. Kalia, “Photocatalytic degradation of Malachite green pollutant using novel dysprosium modified Zn--Mg photocatalysts for wastewater remediation,” Ceramics International, vol. 48, no. 19, pp. 29111-29120, 2022. DOI: https://doi.org/10.1016/j.ceramint.2022.05.050
L. Zeng, L. Xiao, Y. Long, and X. Shi, “Trichloroacetic acid-modulated synthesis of polyoxometalate@UiO-66 for selective adsorption of cationic dyes,” Journal of Colloid and Interface Science, vol. 516, pp. 274-283, 2018. DOI: https://doi.org/10.1016/j.jcis.2018.01.070
Y. Yang, G. Wang, B. Wang, L. Du, X. Jia, and Y. Zhao, “Decolorization of Malachite green by a newly isolated Penicillium sp. YW 01 and optimization of decolorization parameters,” Environmental Engineering Science, vol. 28, no. 8, pp. 555-562, 2011. DOI: https://doi.org/10.1089/ees.2010.0172
X. Yang, Y. Qin, L. Wei, and J. Yang, “Preparation of AgBr/ g-C3N5 composite and its enhanced photodegradation for dyes,” Inorganic Chemistry Communications, vol. 155, p. 110996, 2023. DOI: https://doi.org/10.1016/j.inoche.2023.110996
S. Liu, Y. Bu, S. Cheng, Y. Tao, and W. Hong, “Preparation of g-C3N5/g-C3N4 heterojunction for methyl orange photo-catalytic degradation: Mechanism analysis,” Journal of Water Process Engineering, vol. 54, p. 104019, 2023. DOI: https://doi.org/10.1016/j.jwpe.2023.104019
M. Tasbihi, A. Acharjya, A. Thomas, M. Reli, N. Ambrozova, K. Kocci, and R. Schomacker, “Photocatalytic CO2 reduction by mesoporous polymeric carbon nitride photocatalysts,” Journal of Nanoscience and Nanotechnology, vol. 18, no. 8, pp. 5636-5644, 2018. DOI: https://doi.org/10.1166/jnn.2018.15445
A. Subhadarshini, S. K. Samal, A. Pattnaik, and B. Nanda, “Facile fabrication of plasmonic Ag/ZIF-8: An efficient catalyst for investigation of antibacterial, haemolytic and photocatalytic degradation of antibiotics,” RSC Advances, vol. 13, no. 45, pp. 31756-31771, 2023. DOI: https://doi.org/10.1039/D3RA04851A
A. Subhadarshini, E. Subudhi, P. G. R. Achary, S. A. Behera, N. Parwin, and B. Nanda, “ZIF-8 supported Ag3PO4/g-C3N4 a Double Z-scheme heterojunction: An efficient photocatalytic, antibacterial and hemolytic nanomaterial,” Journal of Water Process Engineering, vol. 65, p. 105901, 2024. DOI: https://doi.org/10.1016/j.jwpe.2024.105901
B. Nanda, S. A. Behera, A. Subhadarshini, P. M. Mishra, and P. G. R. Achary, “Sunlight assisted photocatalytic degradation of antibiotics by boron-doped lanthanum ferrite,” Journal of Molecular Structure, vol. 1306, p. 137921, 2024. DOI: https://doi.org/10.1016/j.molstruc.2024.137921
S. Li, C. You, F. Yang, G. Liang, C. Zhuang, and X. Li, “Interfacial Mo‒S bond modulated S-scheme Mn0.5Cd0.5S/ Bi2MoO6 hetero-junction for boosted photocatalytic removal of emerging organic contaminants,” Chinese Journal of Catalysis, vol. 68, pp. 259-271, 2025. DOI: https://doi.org/10.1016/S1872-2067(24)60181-6
S. Li, K. Rong, X. Wang, C. Shen, F. Yang, and Q. Zhang, “Design of carbon quantum dots/CdS/Ta3N5 S-scheme hetero-junction nanofibers for efficient photocatalytic antibiotic removal,” Acta Physico-Chimica Sinica, vol. 40, no. 12, p. 2403005, 2024. DOI: https://doi.org/10.3866/PKU.WHXB202403005
C. Shen, X. Li, B. Xue, D. Feng, Y. Liu, F. Yang, M. Zhang, and S. Li, “Surface plasmon effect combined with S-scheme charge migration in flower-like Ag/Ag6Si2O7/Bi12O17Cl2 enables efficient photocatalytic antibiotic degradation,” Applied Surface Science, vol. 679, p. 161303, 2025. DOI: https://doi.org/10.1016/j.apsusc.2024.161303
S. Li, R. Yan, M. Cai, W. Jiang, M. Zhang, and X. Li, “Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/ Bi2MoO6 S-scheme photocatalyst by carbon dot modification,” Journal of Materials Science & Technology, vol. 164, pp. 59-67, 2023. DOI: https://doi.org/10.1016/j.jmst.2023.05.009
C. Wang, K. Rong, Y. Liu, F. Yang, and S. Li, “Carbon quantum dots-modified tetra (4-carboxyphenyl) porphyrin/ BiOBr S-scheme heterojunction for efficient photocatalytic antibiotic degradation,” Science China Materials, vol. 67, no. 2, pp. 562-572, 2024. DOI: https://doi.org/10.1007/s40843-023-2764-8
M. Soto-Hernandez, M. Palma-Tenango, and M. del Rosario Garcia-Mateos, “Phenolic compounds: Natural sources, importance and applications.” IntechOpen, 2017. DOI: https://doi.org/10.5772/67213
P. Ju, Y. He, M. Wang, X. Han, F. Jiang, C. Sun, and C. Wu, “Enhanced peroxidase-like activity of MoS2 quantum dots functionalized g-C3N4 nanosheets towards colorimetric detection of H2O2,” Nanomaterials, vol. 8, no. 12, p. 976, 2018. DOI: https://doi.org/10.3390/nano8120976
A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J-O. Müller, R. Schlögl, and J. M. Carlsson, “Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts,” Journal of Materials Chemistry, vol. 18, no. 41, pp. 4893-4908, 2008. DOI: https://doi.org/10.1039/b800274f
X. Yang, Y. Ye, J. Sun, Z. Li, J. Ping, and X. Sun, “Recent advances in g-C3N4-based photocatalysts for pollutant degradation and bacterial disinfection: design strategies, mechanisms, and applications,” Small, vol. 18, no. 9, p. 2105089, 2022. DOI: https://doi.org/10.1002/smll.202105089
L. Huang, Z. Liu, W. Chen, D. Cao, and A. Zheng, “Two-dimensional graphitic C3N5 materials: Promising metal-free catalysts and CO2 adsorbents,” Journal of Materials Chemistry A, vol. 6, no. 16, pp. 7168-7174, 2018. DOI: https://doi.org/10.1039/C8TA01458B
Y. Cui, G. Zhang, Z. Lin, and X. Wang, “Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation,” Applied Catalysis B: Environment and Energy, vol. 181, pp. 413-419, 2016. DOI: https://doi.org/10.1016/j.apcatb.2015.08.018
P. Kumar, E. Vahidzadeh, U. K. Tahku, P. Kar, K. M. Alam, A. Goswami, N. Mahdi, K. Cui, G. M. Bernard, V. K. Michaelis, and K. Shankar, “C3N5: A low bandgap semiconductor containing an azo-linked carbon nitride framework for photo-catalytic, photovoltaic and adsorbent applications,” Journal of the American Chemical Society, vol. 141, no. 13, pp. 5415-5436, 2019. DOI: https://doi.org/10.1021/jacs.9b00144
J. Zhang, G. Yu, C. Yang, and S. Li, “Recent progress on S-scheme heterojunction strategy enabling polymer carbon nitrides C3N4 and C3N5 enhanced photocatalysis in energy conversion and environmental remediation,” Current Opinion in Chemical Engineering, vol. 45, p. 101040, 2024. DOI: https://doi.org/10.1016/j.coche.2024.101040
J. Zhang, C. Yang, H. Liu, G. Yu, Z. Duan, and S. Li, “Insights into interfacial S-scheme/bulk type II dual charge transfer mechanism enabling silver oxide/N-rich carbon nitride anti-photocorrosion and enhanced photoactivity,” Applied Catalysis B: Environment and Energy, vol. 349, p. 123883, 2024. DOI: https://doi.org/10.1016/j.apcatb.2024.123883
J. Zhang, W. Liu, B. Liu, X. Duan, Z. Ao, and M. Zhu, “Is single-atom catalyzed peroxymonosulfate activation better? Coupling with metal oxide may be better,” Chinese Journal of Catalysis, vol. 59, pp. 137-148, 2024. DOI: https://doi.org/10.1016/S1872-2067(24)60009-4
I. Y. Kim, S. Kim, X. Jin, S. Pramkumar, G. Chandra, N-S. Lee, G. P. Mane, S-J. Hwang, S. Umapathy, and A. Vinu, “Ordered mesoporous C3N5 with a combined triazole and triazine framework and its graphene hybrids for the oxygen reduction reaction (ORR),” Angewandte Chemie, vol. 130, no. 52, pp. 17381-17386, 2018. DOI: https://doi.org/10.1002/ange.201811061
C. Tian, S. Liu, M. Shao, and Y. Bu, “Preparation of g-C3N5 composites for butyl xanthate photocatalytic degradation,” Inorganic Chemistry Communications, vol. 159, p. 111726, 2024. DOI: https://doi.org/10.1016/j.inoche.2023.111726
Q. Li, S. Song, Z. Mo, L. Zhang, Y. Qian, and C. Ge, “Hollow carbon nanospheres@graphitic C3N5 heterostructures for enhanced oxygen electroreduction,” Applied Surface Science, vol. 579, no. 44, p. 152006, 2022. DOI: https://doi.org/10.1016/j.apsusc.2021.152006
T. Liu, G. Yang, W. Wang, C. Wang, M. Wang, X. Sun, P. Xu, and J. Zhang, “Preparation of C3N5 nanosheets with enhanced performance in photocatalytic methylene blue (MB) degradation and H2-evolution from water splitting,” Environmental Research, vol. 188, p. 109741, 2020. DOI: https://doi.org/10.1016/j.envres.2020.109741
H. Wang, M. Li, Q. Lu, Y. Cen, Y. Zhang, and S. Yao, “A meso-porous rod-like g-C3N5 synthesized by salt-guided strategy: As a superior photocatalyst for degradation of organic pollutant,” ACS Sustainable Chemistry & Engineering, vol. 7, no. 1, pp. 625-631, 2018. DOI: https://doi.org/10.1021/acssuschemeng.8b04182
L. T. Tai, D. N. Minh, N. Nguyen, A. Hoang, L. M. Huong, C. Q. Cong, N. D. Hai, P. T. Mai. and H. H. Nguyen, “Green synthesis of copper oxide nanoparticles for photodegradation of malachite green and antibacterial properties under visible light,” Optical Materials, vol. 136, p. 113489, 2023. DOI: https://doi.org/10.1016/j.optmat.2023.113489
Q. Meng X. Yang, L. Wu, T. Chen, Y. Li, R. He, W. Zhu, L. Zhu, and T. Duan, “Metal-free 2D/2D C3N5/GO nanosheets with customized energy-level structure for radioactive nuclear wastewater treatment,” Journal of Hazardous Materials, vol. 422, p. 126912, 2022. DOI: https://doi.org/10.1016/j.jhazmat.2021.126912
A. Subhadarshini, S. K. Samal, and B. Nanda, “Z-Scheme heterojunction-based rod-shaped g-C3N5/ZIF-8: Enhancing photocatalytic, antibacterial and hemolytic activity,” Journal of Inorganic and Organometallic Polymers and Materials, pp. 1-15, 2024. DOI: https://doi.org/10.1007/s10904-024-03432-6
D.-H. Park, K. S. Lakhi, K. Ramadass, M-K. Kim, S. N. Talapaneni, S. Joseph, U. Ravon, K. Bahily-Al, and A. Vinu, “Energy efficient synthesis of ordered mesoporous carbon nitrides with a high nitrogen content and enhanced CO2 capture capacity,” Chemistry – A European Journal, vol. 23, no. 45, pp. 10753-10757, 2017. DOI: https://doi.org/10.1002/chem.201702566
S. Cai, X. Zuo, H. Zhao, S. Yang, R. Chen, L. Chen, R. Zhang, D. Ding, and T. Cai, “Evaluation of N-doped carbon for the peroxymonosulfate activation and removal of organic contaminants from livestock wastewater and groundwater,” Journal of Materials Chemistry A, vol. 10, no. 16, pp. 9171-9183, 2022. DOI: https://doi.org/10.1039/D2TA00153E
X. Liu, S. Xing, Y. Xu, R. Chen, C. Lin, and L. Guo, “3-amino-1,2,4-triazole-derived graphitic carbon nitride for photo-dynamic therapy,” Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, vol. 250, p. 119363, 2021. DOI: https://doi.org/10.1016/j.saa.2020.119363
W. Liao, Z. Yang, Y. Wang, S. Li, C. Wang, and Z. Zhou, “Novel Z-scheme Nb2O5/C3N5 photocatalyst for boosted degradation of tetracycline antibiotics by visible light-assisted activation of persulfate system,” Chemical Engineering Journal, vol. 478, p. 147346, 2023. DOI: https://doi.org/10.1016/j.cej.2023.147346
S. A. Behera, A. Amanat, and P. G. R. Achary, “Photo-catalytic degradation of ciprofloxacin drug utilizing novel PVDF/polyaniline/lanthanum strontium manganate@ Ag composites,” Journal of Metals, Materials and Minerals, vol. 34, no. 1, p. 1896, 2024. DOI: https://doi.org/10.55713/jmmm.v34i1.1896
S. A. Behera, A. Subhadarshini, S. S. Bhuyan, B. Nanda, and P. G. R. Achary, “PVDF/rGO/CuO nanocomposites: A robust platform for solar-driven tetracycline photodegradation,” Inorganic Chemistry Communications, vol. 160, p. 111995, 2024. DOI: https://doi.org/10.1016/j.inoche.2023.111995
S. A. Behera, D. Khatua, R. K. Singh, R. N. P. Choudhary, and P. G. R. Achary, “Temperature-dependent electrical and dielectric characteristics of lead germanate Pb5Ge1.5Sn1.5O11,” Inorganic Chemistry Communications, vol. 163, p. 112370, 2024. DOI: https://doi.org/10.1016/j.inoche.2024.112370
Z. Cai, Y. Huang, H. Ji, W. Liu, J. Fu, and X. Sun, “Type-II surface heterojunction of bismuth-rich Bi4O5Br2 on nitrogen-rich g-C3N5 nanosheets for efficient photocatalytic degradation of antibiotics,” Separation and Purification Technology, vol. 280, p. 119772, 2022. DOI: https://doi.org/10.1016/j.seppur.2021.119772
C. You, C. Wang, M. Cai, Y. Liu, B. Zhu, and S. Li, “Improved photo-carrier transfer by an internal electric field in BiOBr/ Nrich C3N5 3D/2D S-scheme heterojunction for efficiently photocatalytic micropollutant removal,” Acta Physico-Chimica Sinica, vol. 40, no. 11, p. 2407014, 2024. DOI: https://doi.org/10.3866/PKU.WHXB202407014
R. Shyam, A. Kumar, S. Pal, and R. Prakash, “Investigation of palladium-doped 2D g-C3N5 materials for enhanced electro-catalytic activity towards hydrogen evolution reaction,” Electrochimica Acta, vol. 496, p. 144485, 2024. DOI: https://doi.org/10.1016/j.electacta.2024.144485
Y. Li, X. Wang, X. Wang, Y. Xia, A. Zhang, J. Shi, L. Gao, H. Wei, and W. Chen, “Z-scheme BiVO4/g-C3N4 heterojunction: An efficient, stable and heterogeneous catalyst with highly enhanced photocatalytic activity towards Malachite Green assisted by H2O2 under visible light,” Colloids and Surfaces A Physico-chemical and Engineering Aspects, vol. 618, p. 126445, 2021. DOI: https://doi.org/10.1016/j.colsurfa.2021.126445
L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D. K. Dutta, and P. Sengupta, “Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light,” Applied Catalysis A: General, vol. 490, pp. 42-49, 2015. DOI: https://doi.org/10.1016/j.apcata.2014.10.053
B. Hazarika, B. Bhattacharjee, and M. Ahmaruzzaman, “Enhanced photocatalytic degradation of brilliant green using g-C3N5/ WO3 nanocomposite: A Z-scheme charge transfer approach under visible light irradiation,” Inorganic Chemistry Communications, vol. 168, p. 112960, 2024. DOI: https://doi.org/10.1016/j.inoche.2024.112960
F. Yi, J. Liu, G. Liang, X. Xiao, and H. Wang, “Insight into the enhanced degradation mechanism of g-C3N4/g-C3N5 hetero-structures through photocatalytic molecular oxygen activation in Van der Waals junction and excitation,” Journal of Alloys and Compounds, vol. 905, p. 164064, 2022. DOI: https://doi.org/10.1016/j.jallcom.2022.164064
S. Vadivel, H. Ganesh, B. Paul, S. Rajendran, A. Habibi-Yangjeh, M. Duraisamy, and M. Kumaravel, “Synthesis of novel AgCl loaded g-C3N5 with ultrahigh activity as visible light photocatalyst for pollutants degradation,” Chemical Physics Letters, vol. 738, p. 136862, 2019. DOI: https://doi.org/10.1016/j.cplett.2019.136862
J. Yang, J. Long, J. Wang, H. Zhang, X. Yang, and L. Wei, “Synthesis of visible-light driven CeO2/g-C3N5 heterojunction with enhanced photocatalytic performance for organic dyes,” Journal of Physics and Chemistry of Solids, vol. 187, no. 1, p. 111867, 2024. DOI: https://doi.org/10.1016/j.jpcs.2024.111867

Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Journal of Metals, Materials and Minerals

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.