Enhancing efficiency and productivity of microbial fuel cells for optimization of wastewater treatment with bioenergy production

Authors

  • Diptimayee PRADHAN Department of Civil and Environmental Engineering, C.V. Raman Global University, Bhubaneswar, India.
  • Krishna Pada BAURI Department of Civil and Environmental Engineering, C.V. Raman Global University, Bhubaneswar, India. https://orcid.org/0000-0001-6032-8620
  • Debarpita GHOSAL Department of Chemical Engineering, C.V. Raman Global University, Bhubaneswar, India
  • Satchidananda MISHRA Department of Civil and Environmental Engineering, C.V. Raman Global University, Bhubaneswar, India; Department of Civil Engineering, Bhubaneswar Institute of Technology, Bhubaneswar, India
  • ABHIJEET DAS CV Raman Global University Bhubaneswar
  • Aditya Raj SINGH Department of Civil and Environmental Engineering, C.V. Raman Global University, Bhubaneswar, India.
  • Akhil GEDELA Department of Civil and Environmental Engineering, C.V. Raman Global University, Bhubaneswar, India.
  • Kumbhakarna MALLIK Department of Civil and Environmental Engineering, C.V. Raman Global University, Bhubaneswar, India.
  • Mohammed Hassan Ali HBAG Department of Chemical Engineering, C.V. Raman Global University, Bhubaneswar, India

DOI:

https://doi.org/10.55713/jmmm.v35i4.2248

Keywords:

Environment, Health, MFC, Organic, Electrode

Abstract

The primary objective is to remove the pollutants from the wastewater streams and reintegrate them into the water cycle, therefore safeguarding the environment and promoting public health. The utilization of membrane fuel cells (MFCs) enables the conversion of organic molecules present in wastewater into electrical energy, while concurrently generating potable water. To optimize the process, it is essential to understand the parameters that affect the performance and the relevant techniques such as electrode materials, microbial collectives, and operating settings to improve the efficiency and performance of MFC. Thus, it aims to present novel ideas that support the real-world deployment of MFCs as a key technology for circular economy and sustainability.

Downloads

Download data is not yet available.

References

G. Di Giacomo, and P. Romano, "Evolution and prospects in managing sewage sludge resulting from municipal wastewater purification," Energies, vol. 15, no. 15, p. 5633, 2022 DOI: https://doi.org/10.3390/en15155633

H. Guven, and A. Tanik, "Water-energy nexus," Smart and Sustainable Built Environment, vol. 9, no. 1, pp. 54–70, 2020. DOI: https://doi.org/10.1108/SASBE-07-2017-0030

M. Ramya, and P. S. Kumar, "A review on recent advancements in bioenergy production using microbial fuel cells," Chemosphere, vol. 288, p. 132512, 2022. DOI: https://doi.org/10.1016/j.chemosphere.2021.132512

S. B. Patwardhan, N. Savla, S. Pandit, P. K. Gupta, A. S. Mathuriya, D, Lahiri, D. A. Jadhav, A. K. Rai, KanuPriya, R. Ray, V. Singh, V. Kumar, and R. Prasad, "Microbial fuel cell united with other existing technologies for enhanced power generation and efficient wastewater treatment," Applied Sciences, vol. 11, no. 22, p. 10777, 2021. DOI: https://doi.org/10.3390/app112210777

M. E. Elshobary, H. M. Zabed, J. Yun, G. Zhang, and X. Qi, "Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity," International Journal of Hydrogen Energy, vol. 46, no. 4, pp. 3135–3159, 2021. DOI: https://doi.org/10.1016/j.ijhydene.2020.06.251

K. Nookwam, B. Cheirsilp, W. Maneechote, P. Boonsawang, and C. Sukkasem, "Microbial fuel cells with photosynthetic-cathodic chamber in vertical cascade for integrated bio-electricity, biodiesel feedstock production and wastewater treatment," Bioresource Technology, vol. 346, p. 126559, 2022. DOI: https://doi.org/10.1016/j.biortech.2021.126559

J. Jayapriya, and V. Ramamurthy, "Challenges to and opportunities in microbial fuel cells," in Bioenergy, Apple Academic Press, 2015, p. 38.

T. C. Dakal, N. Singh, A. Kaur, P. K. Dhillon, J. Bhatankar, R. Meena, R. K. Sharma, B. R. Gadi, B. Sahu, A. Patel, B. Singh, and K. Kumari, "New horizons in microbial fuel cell technology: Applications, challenges, and prospects," Biotechnology for Biofuels and Bioproduct, vol. 18, no. 1, p. 79, 2025. DOI: https://doi.org/10.1186/s13068-025-02649-y

S. Pandit, S. Khilari, S. Roy, D. Pradhan, and D. Das, "Improvement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered microbial fuel cell: Effect of different anodic operating conditions," Bioresource Technology, vol. 166, pp. 451–457, 2014. DOI: https://doi.org/10.1016/j.biortech.2014.05.075

V. Meylani, E. Surahman, A. Fudholi, W. H. Almalki, N. Ilyas, R. Z. Sayyed, "Biodiversity in microbial fuel cells: Review of a promising technology for wastewater treatment," Journal of Environmental Chemical Engineering, vol. 11, no. 2, p. 109503, 2023. DOI: https://doi.org/10.1016/j.jece.2023.109503

S. Malik, S. Kishore, A. Dhasmana, P. Kumari, T. Mitra, V. Chaudhary, R. Kumari, J. Bora, A. Ranjan, T. Minkina, and V. D. Rajput, "A perspective review on microbial fuel cells in treatment and product recovery from wastewater," Water, vol. 15, no. 2, pp. 321-316, 2023. DOI: https://doi.org/10.3390/w15020316

C. Santoro, C. Arbizzani, B. Erable, and I. Ieropoulos, "Microbial fuel cells: From fundamentals to applications: A review," Journal of Power Sources, vol. 356, pp. 225–244, 2017. DOI: https://doi.org/10.1016/j.jpowsour.2017.03.109

Y. Wang, F. Wan, S. Peng, Y. Kang, X. Zheng, and W. Shang, "Critical links and transmission mechanisms in the evolution of water resources system resilience," SSRN 5087181, 2025. DOI: https://doi.org/10.2139/ssrn.5087181

B. E. Logan, and J. M. Regan, "Microbial fuel cells—challenges and applications," Environmental Science & Technology, vol. 40, no. 17, pp. 5172–5180, 2006. DOI: https://doi.org/10.1021/es0627592

B. Virdis, S. Freguia, R. A. Rozendal, K. Rabaey, Z. Yuan, and J. Keller, "Microbial fuel cells," In Treatise on water science, Elsevier, 2011, p. 641–65. DOI: https://doi.org/10.1016/B978-0-444-53199-5.00098-1

K. Kižys, A. Zinovičius, B. Jakštys, I. Bružaitė, E. Balčiūnas, M. Malakauskaite-Petrulevičienė, A. Ramanavicius, and I. Morkvenaite-Vilkonciene, "Microbial biofuel cells: Fundamental principles, development and recent obstacles," Biosensors, vol. 13, no. 2, p. 221, 2023. DOI: https://doi.org/10.3390/bios13020221

S. S Khan, M. Amjad, H. Shareef, and S.Larkin, "Review of microbial fuel cell from a techno-economic perspective. Energy

Exploration & Exploitation, vol. 42, no. 1, pp. 373–398, 2024. DOI: https://doi.org/10.1177/01445987231208510

A. C. Fărcaş, and P. Dobra, "Adaptive control of membrane conductivity of PEM fuel cell," Procedia Technology, vol. 12, pp. 42–49, 2014. DOI: https://doi.org/10.1016/j.protcy.2013.12.454

S. Y. Martínez-Amador, L. J. Ríos-Gonzalez, M. M. Rodríguez-Garza, I. M. M. Moreno-Dávila, T. K. Morales-Martínez, M. A. Medina-Morales, and J. A. Rodriguez-De La Garza, "Bioelectro-chemical systems for wastewater treatment and energy recovery," In Handbook of Research on Bioenergy and Biomaterials, Apple Academic Press, 2021, p. 253–270. DOI: https://doi.org/10.1201/9781003105053-10

X. Fan, Y. Zhou, X. Jin, R. Song, Z. Li, and Q. Zhang, "Carbon material‐based anodes in the microbial fuel cells," Carbon Energy, vol. 3, no. 3, pp. 449–472, 2021. DOI: https://doi.org/10.1002/cey2.113

A. A, Yaqoob, M. N. M. Ibrahim, and C. Guerrero-Barajas, "Modern trend of anodes in microbial fuel cells (MFCs): An overview," Environmental Technology & Innovation, vol. 23, p. 101579, 2021. DOI: https://doi.org/10.1016/j.eti.2021.101579

H-X. Wei, R. Qiu, A-Y. Li, L-J. Liang, Y-N. Feng, S-H. Li, and N. Li, "Facilely prepared carbon dots as effective anode modifier for enhanced performance of microbial fuel cells," Applied Biochemistry and Biotechnology, vol. 196, no. 10, pp. 6595–6607, 2024. DOI: https://doi.org/10.1007/s12010-024-04864-z

N. S. Malvankar, S. E. Yalcin, M. T. Tuominen, and D. R. Lovley, "Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy," Nature Nanotechnology, vol. 9, no. 12, pp. 1012–1017, 2014. DOI: https://doi.org/10.1038/nnano.2014.236

H-B. Shen, X-Y. Yong, Y-L. Chen, Z-H. Liao, R-W. Si, J. Zhou, S-Y. Wang, Y-C. Yong, P-K. OuYang, and T. Zheng, "Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells," Bioresource Technology, vol. 167, pp. 490–494, 2014. DOI: https://doi.org/10.1016/j.biortech.2014.05.093

M. Angelaalincy, N. Senthilkumar, R. Karpagam, G. G. Kumar, B. Ashokkumar, and P. Varalakshmi, "Enhanced extracellular polysaccharide production and self-sustainable electricity generation for PAMFCs by Scenedesmus sp. SB1," ACS Omega, vol. 2, no. 7, pp. 3754–3765, 2017. DOI: https://doi.org/10.1021/acsomega.7b00326

Y. Ye, H. H. Ngo, W. Guo, S. W. Chang, D. D. Nguyen, X. Zhang, S. Zhang, G. Luo, and Y. Liu, "Impacts of hydraulic retention time on a continuous flow mode dual-chamber microbial fuel cell for recovering nutrients from municipal wastewater," Science of The Total Environment, vol. 734, p. 139220, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.139220

A. D. Tharali, N. Sain, and W. J. Osborne, "Microbial fuel cells in bioelectricity production," Frontiers in Life Science, vol. 9, no. 4, pp. 252–266, 2016. DOI: https://doi.org/10.1080/21553769.2016.1230787

B. E. Logan, M. J. Wallack, K-Y. Kim, W. He, Y. Feng, and P. E. Saikaly, "Assessment of microbial fuel cell configurations and power densities," Environmental Science & Technology Letters, vol. 2, no. 8, pp. 206–214, 2015. DOI: https://doi.org/10.1021/acs.estlett.5b00180

M. Zhou, J. Yang, H. Wang, T. Jin, D. Xu, and T. Gu, "Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials," Environmental Technology, vol. 34, no. 13–14, pp. 1915–1928, 2013. DOI: https://doi.org/10.1080/09593330.2013.813951

H. Liu, and B. E. Logan, "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane," Environmental Science & Technology, vol. 38, no. 14, pp. 4040–4046, 2004. DOI: https://doi.org/10.1021/es0499344

I. Ieropoulos, J. Greenman, and C. Melhuish, "Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability," International Journal of Energy Research, vol. 32, no. 13, pp. 1228–1240. 2008. DOI: https://doi.org/10.1002/er.1419

C. Zamora-Ledezma, D. Negrete-Bolagay, F. Figueroa, E. Zamora-Ledezma, M. Ni, F. Alexis, and V. H. Guerrero, "Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods," Environmental Technology & Innovation, vol. 22, p. 101504, 2021. DOI: https://doi.org/10.1016/j.eti.2021.101504

X. A. Walter, S. Forbes, J. Greenman, and I. A. Ieropoulos, "From single MFC to cascade configuration: The relationship between size, hydraulic retention time and power density," Sustainable Energy Technologies and Assessments, vol. 14, pp. 74–79, 2016. DOI: https://doi.org/10.1016/j.seta.2016.01.006

D. Paul, M. T N.oori, P. P. Rajesh, M. M. Ghangrekar, and A. Mitra, "Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell," Sustainable Energy Technologies and Assessments, vol. 26, pp. 77–82, 2018. DOI: https://doi.org/10.1016/j.seta.2017.10.001

H. S. Park, B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang, "A Novel electrochemically active and Fe(III)-reducing bacterium phylo-genetically related to clostridium butyricum isolated from a microbial fuel cell," Anaerobe, vol. 7, no. 6, pp. 297–306, 2001. DOI: https://doi.org/10.1006/anae.2001.0399

L. B. Bruno, D. Jothinathan, and M. Rajkumar, "Microbial fuel cells: Fundamentals, types, significance and limitations. In Microbial fuel cell technology for bioelectricity," Springer, 2018, p. 23–48. DOI: https://doi.org/10.1007/978-3-319-92904-0_2

D. Pant, G. Van Bogaert, C. Porto-Carrero, L. Diels, K. Vanbroekhoven, "Anode and cathode materials characterization for a microbial fuel cell in half cell configuration," Water Science and Technology, vol. 63, no. 10, pp. 2457–2461, 2011. DOI: https://doi.org/10.2166/wst.2011.217

R. Y. A Hassan, F. Febbraio, and S. Andreescu, "Microbial electrochemical systems: Principles, construction and biosensing applications," Sensors (Switzerland), vol. 21, no. 4, pp. 1–19, 2021. DOI: https://doi.org/10.3390/s21041279

C. J. Kirubaharan, K. Santhakumar, N. Senthilkumar, and J-H. Jang, "Nitrogen doped graphene sheets as metal free anode catalysts for the high performance microbial fuel cells," International Journal of Hydrogen Energy, vol. 40, no. 38, pp. 13061–13070, 2015. DOI: https://doi.org/10.1016/j.ijhydene.2015.06.025

M. T. Matsena, M. Mabuse, S. M. Tichapondwa, and E. M. N. Chirwa, "Improved performance and cost efficiency by surface area optimization of granular activated carbon in air-cathode microbial fuel cell," Chemosphere, vol. 281, p. 130941, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2021.130941

S. Mishra, A. Banerjee, S. Chattaraj, A. Samantaray, S. Panigrahi, K. P. Bauri, and H. Thatoi, "Microbial process in anaerobic digestion of food wastes for biogas production: A review," Systems Microbiology and Biomanufacturing, vol. 5, no. 5, pp. 531–549. 2025 DOI: https://doi.org/10.1007/s43393-024-00303-6

X-Q. Lin, Z-L. Li, B. Liang, J. Nan, and A-J. Wang, "Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell," Chemosphere, vol. 219, pp. 358–364. 2019. DOI: https://doi.org/10.1016/j.chemosphere.2018.11.212

Y. Xu, Q. Ou, X. Zhou, Q. He, Z. Wu, R. Huang, J. Song, J. Ma, and X. Huangfu, "Impacts of carrier properties, environmental conditions and extracellular polymeric substances on biofilm formation of sieved fine particles from activated sludge," Science of the Total Environment, vol. 731, p. 139196, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.139196

P. Aelterman, K. Rabaey, H. T. Pham, N. Boon, and W. Verstraete, "Continuous electricity generation at high voltages and currents using stacked microbial fuel cells," Environmental Science & Technology, vol. 40, no. 10, pp. 3388–3394, 2006. DOI: https://doi.org/10.1021/es0525511

A. Dekker, A. T. Heijne, M. Saakes, H. V. M Hamelers, and C. J. N. Buisman, "Analysis and improvement of a scaled-up and stacked microbial fuel cell," Environmental Science & Technology, vol. 43, no. 23, pp. 9038–9042, 2009. DOI: https://doi.org/10.1021/es901939r

T. Jafary, M. Rahimnejad, A. A. Ghoreyshi, G. Najafpour, F. Hghparast, and W. R. W. Daud, "Assessment of bioelectricity production in microbial fuel cells through series and parallel connections. Energy Convers Manag. 2013;75:256–62. DOI: https://doi.org/10.1016/j.enconman.2013.06.032

L. Zhang, J. Li, X. Zhu, D. Ye, Q. Fu, and Q. Liao, "Response of stacked microbial fuel cells with serpentine flow fields to variable operating conditions," International Journal of Hydrogen Energy, vol. 42, no. 45, pp. 27641–27648, 2017. DOI: https://doi.org/10.1016/j.ijhydene.2017.04.205

L. Zhuang, Y. Zheng, S. Zhou, Y. Yuan, H. Yuan, and Y. Chen, "Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment," Bioresource Technology, vol. 106, pp. 82–88, 2012. DOI: https://doi.org/10.1016/j.biortech.2011.11.019

L. Zhuang, Y. Yuan, Y. Wang, and S. Zhou, "Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater," Bioresource Technology, vol. 123, pp. 406–412, 2012. DOI: https://doi.org/10.1016/j.biortech.2012.07.038

P. Ledezma, A. Stinchcombe, J. Greenman, and I. Ieropoulos, "The first self-sustainable microbial fuel cell stack," Physical Chemistry Chemical Physics, vol. 15, no. 7, pp. 2278–2281, 2013. DOI: https://doi.org/10.1039/c2cp44548d

Y. Feng, W. He, J. Liu, X. Wang, Y. Qu, and N. Ren, "A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment," Bioresource Technology, vol. 156, pp. 132–138, 2014. DOI: https://doi.org/10.1016/j.biortech.2013.12.104

J An, B. Kim, J. K. Jang, H-S. Lee, and I. S. Chang, "New architecture for modulization of membraneless and single-chambered microbial fuel cell using a bipolar plate-electrode assembly (BEA)," Biosensors & Bioelectronics, vol. 59, pp. 28–34, 2014. DOI: https://doi.org/10.1016/j.bios.2014.02.063

S. Kondaveeti, J. Seelam, and G. Mohanakrishna, "Microbial fuel cell: A bioelectrochemical system that converts waste to watts," Springer International Publishing, 2018.

Y. Takeuchi, W. Khawdas, Y. Aso, and H. Ohara, "Microbial fuel cells using Cellulomonas spp. with cellulose as fuel," Journal of Bioscience and Bioengineering, vol. 123, no. 3, pp. 358–63, 2017. DOI: https://doi.org/10.1016/j.jbiosc.2016.10.009

G. S Jadhav, and M M. Ghangrekar, "Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration, Bioresource Technology, vol. 100, no. 2, pp. 717–23, 2009. DOI: https://doi.org/10.1016/j.biortech.2008.07.041

J. Cao, Y. Shi, J. Xin, S. Kong, and X.Wang, "Application of microbial fuel cells with tungsten-based semiconductor modified electrode in the treatment of Cr(VI) pollutions," Biochemical Engineering Journal, vol. 198, p. 109034, 2023. DOI: https://doi.org/10.1016/j.bej.2023.109034

Y. Wang, C. He, W. Li, W. Zong, Z. Li, L. Yuan, G. Wang, and Y. Mu, "High power generation in mixed-culture microbial fuel cells with corncob-derived three-dimensional N-doped bioanodes and the impact of N dopant states," Chemical Engineering Journal, vol. 399, p. 125848, 2020. DOI: https://doi.org/10.1016/j.cej.2020.125848

N. Senthilkumar, M. Pannipara, and A. G. Al-Sehemi, "PEDOT/ NiFe2O4 nanocomposites on biochar as a free-standing anode for high-performance and durable microbial fuel cells," New Journal of Chemistry, vol. 43, no. 20, pp. 7743–7750, 2019. DOI: https://doi.org/10.1039/C9NJ00638A

S. Mishra, S. Panigrahi, and D. Kar, "Use of conductive material in the anaerobic digestion for improving process performance: A Review," Waste-to-Wealth, pp. 162–75, 2024. DOI: https://doi.org/10.1201/9781003327646-11

R. Kumar, L. Singh, and A. W. Zularisam, "Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications," Renewable and Sustainable Energy Reviews, vol. 56, pp. 1322–36, 2016. DOI: https://doi.org/10.1016/j.rser.2015.12.029

C. S. Kang, N. Eaktasang, D-Y. Kwon, and H. S. Kim, "Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell," Bioresource Technology, vol. 165, pp. 27–30, 2014. DOI: https://doi.org/10.1016/j.biortech.2014.03.148

S. Chen, A. E. Rotaru, F. Liu, J. Philips, T. L. Woodard, K. P. Nevin, and D. R. Lovley, "Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures" Bioresource Technology, vol. 173, pp. 82–86, 2014. DOI: https://doi.org/10.1016/j.biortech.2014.09.009

S. S. Kumar, S. K. Malyan, S. Basu, N. R. Bishnoi, "Syntrophic association and performance of clostridium, desulfovibrio, aeromonas and tetrathiobacter as anodic biocatalysts for bio-electricity generation in dual chamber microbial fuel cell. Environmental Science and Pollution Research, vol. 24, pp. 16019–16030, 2017. DOI: https://doi.org/10.1007/s11356-017-9112-4

B. E. Logan, and K. Rabaey, "Conversion of wastes into bio-electricity and chemicals by using microbial electrochemical technologies," Science, vol. 337, no. 6095, pp. 686–90, 2012. DOI: https://doi.org/10.1126/science.1217412

N. S. Malvankar, and D R. Lovley, "Microbial nanowires: A new paradigm for biological electron transfer and bioelectronics," ChemSusChem, vol. 5, no. 6, pp. 1039–46, 2012. DOI: https://doi.org/10.1002/cssc.201100733

E. Marsili, D. B. Baron, I. D. Shikhare, D. Coursolle, J. A. Gralnick, and D R. Bond, "Shewanella secretes flavins that mediate extracellular electron transfer," Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 10, pp. 3968–3973, 2008. DOI: https://doi.org/10.1073/pnas.0710525105

M. Behera, and M. M. Ghangrekar, "Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH," Bioresource Technology, vol. 100, no. 21, pp. 5114–5121, 2009. DOI: https://doi.org/10.1016/j.biortech.2009.05.020

Y. Tian, X. Mei, Q. Liang, D. Wu, N. Ren, and D. Xing, "Biological degradation of potato pulp waste and microbial community structure in microbial fuel cells," RSC Advances, vol. 7, no. 14, pp. 8376–80, 2017. DOI: https://doi.org/10.1039/C6RA27385H

Y. Qiao, C. M. Li, S-J. Bao, and Q-L. Bao, "Carbon nanotube/ polyaniline composite as anode material for microbial fuel cells," Journal of Power Sources, vol. 170, no. 1, pp. 79–84, 2007. DOI: https://doi.org/10.1016/j.jpowsour.2007.03.048

A. González, P. Cañizares, J. Lobato, M. A. Rodrigo, F. J. F. Morales, "Effects of external resistance on microbial fuel cell’s performance," in Environment, Energy and Climate Change II, 2016, pp. 175–97.

E. Bazdar, R. Roshandel, S. Yaghmaei, and M.M. Mardanpour, "The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell," Bioresource Technology, vol. 261, pp. 350–360, 2018. DOI: https://doi.org/10.1016/j.biortech.2018.04.026

N. A. N. Mahmood, N. F. Ghazali, K. A. Ibrahim, and M. A. Ali, "Anodic pH evaluation on performance of power generation from palm oil empty fruit bunch (EFB) in dual chambered microbial fuel cell (MFC)," Chemical Engineering Transactions, vol. 56, pp. 1795–800, 2017.

M. Sharma, S. Bajracharya, S. Gildemyn, S. A. Patil, Y. Alvarez-Gallego, D. Pant, K. Rabaey, and X. Dominguez-Benetton, "A critical revisit of the key parameters used to describe microbial electrochemical systems," Electrochimica Acta, vol. 140, pp. 191–208, 2014. DOI: https://doi.org/10.1016/j.electacta.2014.02.111

T. Mulyono, M. Misto, B. E. Cahyono, and N. H. Fahmidia, "The impact of adding vegetable waste on the functioning of microbial fuel cell," in AIP conference proceedings, AIP Publishing, 2022. DOI: https://doi.org/10.1063/5.0108950

S. Z. Abbas, M. Rafatullah, M. A. Khan, and M. R. Siddiqui, "Bioremediation and electricity generation by using open and closed sediment microbial fuel cells," Frontiers in Microbiology, vol. 9, p. 3348, 2019. DOI: https://doi.org/10.3389/fmicb.2018.03348

V. Margaria, T. Tommasi, S. Pentassuglia, V. Agostino, A. Sacco, C. Armato, A. Chidoni, T. Schiliro, and M. Quaglio, "Effects of pH variations on anodic marine consortia in a dual chamber microbial fuel cell," International Journal of Hydrogen Energy, vol. 42, no. 3, pp. 1820–1829, 2017. DOI: https://doi.org/10.1016/j.ijhydene.2016.07.250

Y. Ahn, and B. E. Logan, "Effectiveness of domestic waste-water treatment using microbial fuel cells at ambient and mesophilic temperatures," Bioresource Technology, vol. 101, no. 2, pp. 469–475, 2010. DOI: https://doi.org/10.1016/j.biortech.2009.07.039

S. A. Patil, F. Harnisch, B. Kapadnis, and U. Schröder "Electroactive mixed culture biofilms in microbial bioelectro-chemical systems: The role of temperature for biofilm formation and performance," Biosensors & Bioelectronics, vol. 26, no. 2, pp. 803–808, 2010. DOI: https://doi.org/10.1016/j.bios.2010.06.019

A. Tremouli, M. Martinos, and G. Lyberatos, "The effects of salinity, pH and temperature on the performance of a microbial fuel cell," Waste and biomass valorization,vol. 8, pp. 2037–2043, 2017. DOI: https://doi.org/10.1007/s12649-016-9712-0

Y Xia, X. Wen, B. Zhang, and Y.Yang, "Diversity and assembly patterns of activated sludge microbial communities: A review," Biotechnology Advances, vol. 36, no. 4, pp. 1038–1047, 2018. DOI: https://doi.org/10.1016/j.biotechadv.2018.03.005

A. Saravanan, P. S. Kumar, S. Varjani, S. Jeevanantham, P. R. Yaashikaa, P. Thamarai, B. Abirami, and C. S. George, "A review on algal-bacterial symbiotic system for effective treatment of wastewater," Chemosphere, vol. 271, p. 129540, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2021.129540

S. Aftab, A. Shah, J. Nisar, M. N. Ashiq, M. S. Akhter, and A. H. Shah, "Marketability prospects of microbial fuel cells for sustainable energy generation," Energy & Fuels, vol. 34, no. 8, pp. 9108–9136, 2020. DOI: https://doi.org/10.1021/acs.energyfuels.0c01766

X. Zhang, X. Li, X. Zhao, and Y. Li, "Factors affecting the efficiency of a bioelectrochemical system: A review," RSC Advances, vol. 9, no. 34, pp. 19748–19761, 2019. DOI: https://doi.org/10.1039/C9RA03605A

S. Cheng, and B. E. Logan, "Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochemistry Communications, vol. 9, no. 3, pp. 492–496, 2007. DOI: https://doi.org/10.1016/j.elecom.2006.10.023

B. E. Logan, "Microbial fuel cells," John Wiley & Sons, 2008. DOI: https://doi.org/10.1002/9780470258590

L. Gao, X. Wu, C. Zhu, Z. Jin, W. Wang, and X. Xia, "Metabolic engineering to improve the biomanufacturing efficiency of acetic acid bacteria: advances and prospects," Critical Reviews in Biotechnology," vol. 40, no. 4, pp. 522–538, 2020. DOI: https://doi.org/10.1080/07388551.2020.1743231

M. J. Angelaalincy, R. Navanietha Krishnaraj, G. Shakambari, B. Ashokkumar, S. Kathiresan, and P. Varalakshmi, "Biofilm engineering approaches for improving the performance of microbial fuel cells and bioelectrochemical systems," Frontiers in Energy Research," vol. 6, p. 63, 2018. DOI: https://doi.org/10.3389/fenrg.2018.00063

Wang H, Ren ZJ. Bioelectrochemical metal recovery from wastewater: a review. Water Res. 2014;66:219–32. DOI: https://doi.org/10.1016/j.watres.2014.08.013

K. Rabaey, and W. Verstraete, "Microbial fuel cells: Novel biotechnology for energy generation," Trends in Biotechnology, vol. 23, no. 6, pp. 291–298, 2005. DOI: https://doi.org/10.1016/j.tibtech.2005.04.008

A. Singh, P. Ghosh, M. Rajpal, and N. Dwivedi, "Designing and technical feasibility of biohybrid system for scaling up treatment process," in Wastewater Treatment Through Nature-Based Solutions: Achieving Sustainable Development Goal 6. Springer; 2025. p. 221–256. DOI: https://doi.org/10.1007/978-981-96-6699-7_10

A. Das, and S. Mishra, "Reimagining biofiltration for sustainable industrial wastewater treatment," Discover Sustainability, vol. 6, no. 1, p. 826, 2025. DOI: https://doi.org/10.1007/s43621-025-01784-8

Downloads

Published

2025-10-21

How to Cite

[1]
D. . PRADHAN, “Enhancing efficiency and productivity of microbial fuel cells for optimization of wastewater treatment with bioenergy production”, J Met Mater Miner, vol. 35, no. 4, p. e2248, Oct. 2025.

Issue

Section

Review Articles

Categories