Comprehensive study on the structural and optical properties of bismuth manganese oxide composite ceramic for optoelectronic applications
DOI:
https://doi.org/10.55713/jmmm.v35i4.2401Keywords:
XRD, FTIR, Urbach energy, Sillenite, MulliteAbstract
This work assessed the potential of bismuth manganese oxide composite ceramic for optoelectronic applications by methodically examining its structural, vibrational, and optical characteristics. X-ray diffraction (XRD) spectroscopy provided the coexistence of Bi12MnO20 (sillenite-type) and Bi2Mn4O10 (mullite-type) phases, indicating a deviation from the ideal perovskite structure and suggesting a complex crystallographic nature influencing its functional properties. Fourier transform infrared (FTIR) spectroscopy confirmed the modes of vibration of Bi–O and Mn–O bonds that were contained, supporting the structural composition. UV-Vis-NIR spectroscopy demonstrated strong optical absorption in the 300 nm to 800 nm range, affirming the suitability of the material for optoelectronic applications. The bandgap energy was determined to be 3.091 eV, with Tauc's analysis revealing direct transitions at 0.66 eV and 5.15 eV and indirect transitions at 1.11 eV and 5.17 eV, suggesting multiple electronic absorption mechanisms. The Urbach energy of 3.34 eV indicated significant structural disorder due to composite nature and lattice distortions. Additionally, extinction coefficient and penetration depth analysis confirmed strong light-matter interaction, reinforcing potential properties for optical coatings, photodetectors, and energy-harvesting applications.
Downloads
References
G. Agbeworvi, A. Pakhira, S. Hariyani, W. Zaheer, A. Giem, J. R. Ayala, and S. Banerjee, “Stereochemical expression of Bi 6s 2 lone pairs mediates fluoride-ion (De) insertion in tunnel-structured Bi2PdO4 and Bi1.6Pb0.4PtO4,” Chemical Science, vol. 16, no. 12, pp. 5129-5141, 2025. DOI: https://doi.org/10.1039/D4SC08111K
H. Naganuma, A. Kovacs, T. Harima, H. Shima, S. Okamura, and Y. Hirotsu, “Structural analysis of interfacial strained epitaxial BiMnO3 films fabricated by chemical solution deposition,” Journal of Applied Physics, vol. 105, no. 7, 2009. DOI: https://doi.org/10.1063/1.3074096
D. Panda, S. S. Hota, and R. N. P. Choudhary, “Development of a complex strontium bismuth molybdate material: Micro-structural, electrical, and leakage current characteristics for storage and electronic device application,” Materials Research Bulletin, vol. 174, p. 112727, 2024. DOI: https://doi.org/10.1016/j.materresbull.2024.112727
D. Panda, S. S. Hota, and R. N. P. Choudhary, “Structural, morphological, dielectric, and electrical characteristics of a brownmillerite material for electronic devices: KBiMn2O5,” Chemical Physics Impact, vol. 8, p. 100540, 2024. DOI: https://doi.org/10.1016/j.chphi.2024.100540
S. S. Hota, D. Panda, and R. N. P. Choudhary, “Structural, dielectric, electrical, leakage current behavior of calcined compound; (Bi1/2Cs1/2)(Fe1/3Mn1/3W1/3)O3 for electronic devices,” Transactions on Electrical and Electronic Materials, vol. 25, no. 3, pp. 280-293, 2024. DOI: https://doi.org/10.1007/s42341-023-00507-y
S. S. Hota, D. Panda, L. Biswal, S. Joshi, A. Shukla, and R. N. P. Choudhary, “Effect of milling time on structural and electrical properties of thermomechanically synthesized of Ba0.1(Bi0.45Na0.45)TiO3 nanoceramics for ferroelectric random- access memory device,” Journal of Alloys and Compounds, vol. 1010, p. 177041, 2025. DOI: https://doi.org/10.1016/j.jallcom.2024.177041
S. S. Hota, D. Panda, and R. N. P. Choudhary, “Structural, dielectric, electrical, and leakage current properties of SrWO4 for electronic devices,” Journal of the Korean Ceramic Society, vol. 61, no. 6, pp. 1207-1221, 2024. DOI: https://doi.org/10.1007/s43207-024-00438-1
D. Panda, S. S. Hota, and R. N. P. Choudhary, “Development of lead‐free defect brownmillerite perovskite ceramic LiBiFeMnO5 solid solution for electronic devices,” Advanced Engineering Materials, vol. 26, no. 20), p. 2400010, 2024. DOI: https://doi.org/10.1002/adem.202400010
L. A. S. De Oliveira, J. P. Sinnecker, M. D. Vieira, and A. Pentón- Madrigal, “Low temperature synthesis, structural, and magnetic characterization of manganese sillenite Bi12MnO20,” Journal of Applied Physics, vol. 107, no. 9, 2010. DOI: https://doi.org/10.1063/1.3362927
X. Wu, M. Li, J. Li, G. Zhang, and S. Yin, “A sillenite-type Bi12MnO20 photocatalyst: UV, visible and infrared lights responsive photocatalytic properties induced by the hybridization of Mn 3d and O 2p orbitals,” Applied Catalysis B: Environmental, vol. 219, pp. 132-141, 2017. DOI: https://doi.org/10.1016/j.apcatb.2017.07.025
J. Zhao, H. Zhang, and J. Xue, “Hierarchical manganese sillenite Bi12MnO20 microparticles assembled by nanocubes with microwave absorption enhancement,” Ceramics International, vol. 46, no. 4, pp. 4700-4706, 2020. DOI: https://doi.org/10.1016/j.ceramint.2019.10.201
A. Z. Szeremeta, A. Molak, S. Pawlus, J. Koperski, and A. Leonarska, “Electrical properties of epoxy-glue/(Bi12MnO20–BiMn2O5) composite,” Journal of Composite Materials, vol. 52, no. 10, pp. 1305-1315, 2018. DOI: https://doi.org/10.1177/0021998317724860
A. Sarker, A. K. M. Rahman, T. Debnath, and A. Hussain, “Studies on Bi2Mn4O10 and it's chromium and cobalt doped series,” Acta Crystallographica Section A: Foundation and Advances, vol. 73, no. a2, pp. C511-C511, 2017 DOI: https://doi.org/10.1107/S2053273317090623
M. Burianek, T. F. Krenzel, M. Schmittner, J. Schreuer, R. X. Fischer, M. Mühlberg, and T. M. Gesing, “Single crystal growth and characterization of mullite-type Bi2Mn4O10.” International journal of materials research”, vol. 103, no. 4, pp. 449-455, 2012. DOI: https://doi.org/10.3139/146.110714
Y. T. Prabhu, K. V. Rao, V. S. S. Kumar, and B. S. Kumari, “X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation,” World Journal of Nano Science and Engineering, vol. 4, no. 1, pp. 21-28, 2014. DOI: https://doi.org/10.4236/wjnse.2014.41004
I. Soudani, K. B. Brahim, A. Oueslati, H. Slimi A. Aydi, and K. Khirouni, “Investigation of structural, morphological, and transport properties of a multifunctional Li-ferrite compound,” RSC advances, vol. 12, no. 29, pp. 18697-18708, 2022. DOI: https://doi.org/10.1039/D2RA02757G
E. Smith, and G. Dent, “Modern raman spectroscopy: A practical approach,” John Wiley & Sons, 2019, pp. 1-210. DOI: https://doi.org/10.1002/9781119440598
M. Singh, T. Paul, P. Pal, A. Sahoo, L. S. Tanwar, N. H. Makani, A. Ghosh, and R. Banerjee, “High ionic conduction and polarity-induced piezoresponse in layered bimetallic Rb4Ag2BiBr9 single crystals,” The Journal of Physical Chemistry C, vol. 126, no. 51, pp. 21810-21824, 2022. DOI: https://doi.org/10.1021/acs.jpcc.2c06844
Y. Y. Dong, Y. Liang, B. Gao, and Q. Xu, “Supercritical CO2-induced plastic deformation on two-dimensional SrZrO3 for its multiferroic performance,” Materials Chemistry Frontiers, vol. 9, no. 8, pp. 1213-1219, 2025. DOI: https://doi.org/10.1039/D5QM00076A
R. Hailili, Z. Q. Wang, H. Ji, C. Chen, X. Q. Gong, H. Sheng, and J. Zhao, “Mechanistic insights into the photocatalytic reduction of nitric oxide to nitrogen on oxygen-deficient quasi-two-dimensional bismuth-based perovskites,” Environmental Science: Nano, vol, 9, no. 4, pp. 1453-1465, 2022. DOI: https://doi.org/10.1039/D1EN01090E
C. Zhang, K. Xu, K. Liu, J. Xu, and Z. Zheng, “Metal oxide resistive sensors for carbon dioxide detection,” Coordination Chemistry Reviews, vol. 472, p. 214758, 2022. DOI: https://doi.org/10.1016/j.ccr.2022.214758
U. Manhas, A. K. Atri, S. Sharma, S. Singh, I. Qadir, P. Sharma, M. Sharma, and D. Singh, “High-performance recyclable magnetic CuFe2–x CrxO4 nanocatalysts for facile reduction of nitrophenols and photooxidative degradation of organic dyes,” ACS Sustainable Resource Management, vol. 1, no. 2, pp. 303-315, 2024. DOI: https://doi.org/10.1021/acssusresmgt.3c00082
S. Wu, D. Ruan, Z. Huang, H. Xu, and W. Shen, “Weakening Mn–O bond strength in Mn-based perovskite catalysts to enhance propane catalytic combustion,” Inorganic Chemistry, vol. 63, no. 22, pp. 10264-10277, 2024. DOI: https://doi.org/10.1021/acs.inorgchem.4c00715
X. Zheng, L. Zhang, X. Wang, Y. Qing, J. Chen, Y. Wu, S. Deng, L. He, F. Liao, Y. Wang, J. Geng, J. Sun, G. Li, L. Liu, and J. Lin, “Synthesis, structure, and superconductivity of B-site doped perovskite bismuth lead oxide with indium,” Inorganic Chemistry Frontiers, vol. 7, no. 19, pp. 3561-3570, 2020. DOI: https://doi.org/10.1039/D0QI00828A
J. E. R. Rocha, “Catalyseur pérovskite supporté sur des nano-fibres de carbone pour une réduction améliorée de l'oxygène,” Doctoral dissertation, Université Paris sciences et lettres; Universidad de Guanajuato, México, 2023.
F. Sharmin, “Hydrothermal synthesis of rare earth and transition metal co-doped BiFeO3 and investigation of their photocatalytic performance,” Post graduate dissertations (Theses) of Physics (PHY), Bangladesh University of Engineering and Technology, Bangladesh, 2023.
P. A. Krawczyk, J. Wyrwa, and W. W. Kubiak, “Synthesis and catalytic performance of high-entropy rare-earth perovskite nanofibers:(Y0.2La0.2Nd0.2Gd0.2Sm0.2) CoO3 in low-temperature carbon monoxide oxidation,” Materials, vol. 17, no. 8, p. 1883, 2024. DOI: https://doi.org/10.3390/ma17081883
B. Revathi, L. Balakrishnan, S. Pichaimuthu, A. N. Grace, and N. K. Chandar, “Photocatalytic degradation of rhodamine B using BiMnO3 nanoparticles under UV and visible light irraiation,” Journal of Materials Science: Materials in Electronics, vol. 31, pp. 22487-22497, 2020. DOI: https://doi.org/10.1007/s10854-020-04750-4
H. M. Ghaithan, S. M. Qaid, Z. A. Alahmed, H. S. Bawazir, and A. S. Aldwayyan, “Electronic structure and optical properties of inorganic Pm3m and Pnma CsPbX3 (X= Cl, Br, I) perovskite: A theoretical understanding from density functional theory calculations,” Materials, vol. 16, no. 18, p. 6232, 2023. DOI: https://doi.org/10.3390/ma16186232
R. Mguedla, A. B. J. Kharrat, O. Taktak, H. Souissi, S. Kammoun, K. Khirouni, and W. Boujelben, “Experimental and theoretical investigations on optical properties of multiferroic PrCrO3 ortho-chromite compound,” Optical Materials, vol. 101, p. 109742, 2020. DOI: https://doi.org/10.1016/j.optmat.2020.109742
A. M. Mansour, “Fabrication and characterization of a photodiode based on 5′, 5′′-dibromo-o-cresolsulfophthalein (BCP),” Silicon,
vol. 11, pp. 1989-1996, 2019. DOI: https://doi.org/10.1007/s12633-018-0016-9
A. M. Mansour, E. M. El-Menyawy, G. M. Mahmoud, A. A. Azab, and F. S. Terra, “Structural, optical and galvanomagnetic properties of nanocrystalline Se51.43In44.67Pb3.9 thin films,”
Materials Research Express, vol. 4, no. 11, p. 115903, 2017. DOI: https://doi.org/10.1088/2053-1591/aa95ee
G. V. Umoh, J. E. Leal-Perez, S. F. Olive-Méndez, J. González-
Hernández, F. Mercader-Trejo, R. Herrera-Basurto, O. Auciello, and A. Hurtado-Macias, “Complex dielectric function, Cole-Cole, and optical properties evaluation in BiMnO3 thin-films by Valence Electron Energy Loss Spectrometry (VEELS) analysis,” Ceramics International, vol. 48, no. 15, pp. 22141-22146, 2022. DOI: https://doi.org/10.1016/j.ceramint.2022.04.212
J. Chakrabartty, D. Barba, L. Jin, D. Benetti, F. Rosei, and R. Nechache, “Photoelectrochemical properties of BiMnO3 thin films and nanostructures,” Journal of Power Sources, vol. 365, pp. 162-168, 2017. DOI: https://doi.org/10.1016/j.jpowsour.2017.08.064
Y. A. Mikheev, and Y. A. Ershov, “Assignment of the π→ π* and n→ π* transitions to the spectral bands of azobenzene and dimethylaminoazobenzene,” Russian Journal of Physical Chemistry A, vol. 92, pp. 1499-1507, 2018. DOI: https://doi.org/10.1134/S0036024418080174
A, Sharan, I. An, C. Chen, R. W. Collins, J. Lettieri, Y. Jia, D. G. Schlom, and V. Gopalan, “Large optical nonlinearities in BiMnO3 thin films,” Applied Physics Letters, vol. 83, no. 25, pp. 5169-5171, 2003. DOI: https://doi.org/10.1063/1.1632544
B. Revathi, and N. K. Chandar, “Magnetic field sensing characteristics of rGO/BiMnO3 nanocomposites loaded clad-modified optical fiber sensor,” Journal of Science: Advanced Materials and Devices, vol. 7, no. 4, p. 100488, 2022. DOI: https://doi.org/10.1016/j.jsamd.2022.100488
S. A., Moyez, and S. Roy, “Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell,” Journal of Nanoparticle Research, vol. 20, pp. 1-13, 2018. DOI: https://doi.org/10.1007/s11051-017-4108-z
A, Bougrine, A. El Hichou, M. Addou, J. Ebothé, A. Kachouane, and M. Troyon, “Structural, optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis,” Materials Chemistry and Physics, vol. 80, no. 2, pp. 438-445, 2003. DOI: https://doi.org/10.1016/S0254-0584(02)00505-9
A. M. Mansour, M. Nasr, H. A. Saleh, and G. M. Mahmoud, “Physical characterization of 5′, 5 ″-dibromo-o-cresolsulfophthalein (BCP) spin-coated thin films and BCP/p-Si based diode,” Applied Physics A, vol. 125, pp. 1-11, 2019. DOI: https://doi.org/10.1007/s00339-019-2920-2
El A. M. Nahrawy, B. A. Hemdan, A. M. Mansour, A. Elzwawy, and A. B. AbouHammad, “Structural and opto-magnetic properties of nickel magnesium copper zircon silicate nano-composite for suppress the spread of foodborne pathogenic bacteria,” Silicon, vol. 14, no. 12, pp. 1-16, 2021. DOI: https://doi.org/10.1007/s12633-021-01295-x
B. A. Hemdan, A. M. El Nahrawy, A. F. M. Mansour, and A. B. A. Hammad, “Green sol–gel synthesis of novel nanoporous copper aluminosilicate for the eradication of pathogenic microbes in drinking water and wastewater treatment,” Environmental Science and Pollution Research, vol. 26, pp. 9508-9523, 2019. DOI: https://doi.org/10.1007/s11356-019-04431-8
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Journal of Metals, Materials and Minerals

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.




