Macro-encapsulation of polyethylene glycol and magnetite (Fe\(_{3}\)O\(_{4}\)) in concrete as phase change materials for building thermal management

ผู้แต่ง

  • Muhammad FAUZI Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jl. Prof. Dr. Mahar Mardjono-Depok, 16424, Indonesia
  • Budhy KURNIAWAN Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jl. Prof. Dr. Mahar Mardjono-Depok, 16424, Indonesia
  • Anggito Pringgo TETUKO Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Bld. 440, KST. B. J. Habibie-Tangerang Selatan, 15314, Indonesia
  • Timbangen SEMBIRING Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1-Medan, 20155, Indonesia
  • Fanna NILAM Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1-Medan, 20155, Indonesia
  • Amdy FACHREDZY Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jl. Prof. Dr. Mahar Mardjono-Depok, 16424, Indonesia
  • Perdamean SEBAYANG Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Bld. 440, KST. B. J. Habibie-Tangerang Selatan, 15314, Indonesia

DOI:

https://doi.org/10.55713/jmmm.v35i3.2310

คำสำคัญ:

material composites, Energy, heat transfer, Polymer, Magnetite

บทคัดย่อ

Thermal management technology is a crucial strategy for reducing energy consumption in buildings by utilizing stored solar energy. This study developed a polyethylene glycol (PEG)-based phase-change material (PCM), selected for its superior physicochemical stability, high latent enthalpy, and environmental compatibility. To enhance thermal conductivity, 20 vol% magnetite (Fe₃O₄) was incorporated into the PEG matrix. The composite was synthesized via an ultrasonic-assisted method (37 kHz, 80°C, 1 h). X-ray diffraction (XRD) confirmed the crystalline structure of PEG and the cubic phase of Fe3O4, while Fourier-transform infrared spectroscopy (FTIR) validated the synthesis by identifying Fe–O, C–H, and O–H functional groups. Scanning electron microscopy (SEM) revealed a homogeneous dispersion of Fe3O4, and energy-dispersive X-ray spectroscopy (EDS) confirmed the elemental composition of C, H, O, and Fe. Vibrating sample magnetometry (VSM) demonstrated superparamagnetic behavior, with a saturation magnetization of 16.76 emu∙g‒1. Thermal analysis indicated a 49% increase in thermal conductivity, a latent heat of 78.88 J∙g‒1, and a melting temperature of 61.51℃. These findings underscore the potential of Fe3O4-enhanced PEG-based PCMs for efficient thermal regulation in buildings, contributing to enhanced energy efficiency and sustainability.

Downloads

Download data is not yet available.

เอกสารอ้างอิง

Md. H. Zahir, M. M. Rahman, S. K. S. Basamad, K. O. Mohaisen, K. Irshad, M. M. Rahman, Md. A. Aziz, A. Ali, and M. M. Hossain, “Preparation of a sustainable shape-stabilized phase change material for thermal energy storage based on Mg2+-doped CaCO3/PEG composites,” Nanomaterials, vol. 11, p. 1639, 2021. DOI: https://doi.org/10.3390/nano11071639

T. Hu, J. Zhang, R. Xiao, G. Wang, W. Yu, H. Su, and L. Su, “Study on the preparation and properties of TiO2@n-octa-decane phase change microcapsules for regulating building temperature,” Applied Thermal Engineering, vol. 249, p. 123429, 2024. DOI: https://doi.org/10.1016/j.applthermaleng.2024.123429

Y. Liu, L. Sun, J. Zheng, L. Yang, L. Jiang, and Y. Song, “Numerical simulation study of the phase transition heat transfer of nanoparticle-enhanced heat storage tubes,” Applied Thermal Engineering, vol. 231, p. 121010, 2023. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121010

P. K. S. Rathore, and S. K. Shukla, “Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review,” Energy Build, vol. 236, p. 110799, 2021. DOI: https://doi.org/10.1016/j.enbuild.2021.110799

A. P. Tetuko, A. M. S. Sebayang, A. Fachredzy, E. A. Setiadi, N. S. Asri, A. Y. Sari, F. Purnomo, C. Muslih, M. A. Fajrin, and P. Sebayang, “Encapsulation of paraffin-magnetite, paraffin, and polyethylene glycol in concretes as thermal energy storage,” Journal of Energy Storage, vol. 68, p. 107684, 2023. DOI: https://doi.org/10.1016/j.est.2023.107684

P. K. S. Rathore, N. K. Gupta, D. Yadav, S. K. Shukla, and S. Kaul, “Thermal performance of the building envelope integrated with phase change material for thermal energy storage: An updated review,” Sustainable Cities and Society, vol. 79, p. 103690, 2022. DOI: https://doi.org/10.1016/j.scs.2022.103690

H. Togun, H. S. Sultan, H. I. Mohammed, A. M. Sadeq, N. Biswas, H. A. Hasan, R. Z. Homod, A. H. Abdulkadhim, Z. M. Yaseen, and P. Talebizadehsardari, “A critical review on phase change materials (PCM) based heat exchanger: Different hybrid techniques for the enhancement,” Journal of Energy Storage, vol. 79, p. 109840, 2024. DOI: https://doi.org/10.1016/j.est.2023.109840

W. Wang, M. M. Umair, J. Qiu, X. Fan, Z. Cui, Y. Yao, and B. Tang, “Electromagnetic and solar energy conversion and storage based on Fe3O4-functionalised graphene/phase change material nanocomposites,” Energy Convers Manag, vol. 196, pp. 1299-1305, 2019. DOI: https://doi.org/10.1016/j.enconman.2019.06.084

J. Yang, L.-S. Tang, L. Bai, R.-Y. Bao, Z.-Y. Liu, B.-H. Xie, M.-B. Yang, and W. Yang, “High-performance composite phase change materials for energy conversion based on macroscopically three-dimensional structural materials,” Mater Horiz, vol. 6, pp. 250-273, 2019. DOI: https://doi.org/10.1039/C8MH01219A

W. Aftab, X. Huang, W. Wu, Z. Liang, A. Mahmood, and R. Zou, “Nanoconfined phase change materials for thermal energy applications,” Energy & Environmental Science, vol. 11, pp. 1392-1424, 2018. DOI: https://doi.org/10.1039/C7EE03587J

W. N. Jannah, A. Taufiq, S. Zulaikah, A. Hidayat, E. Suharyadi, S. T. Wicaksono, and S. Sunaryono, “Fe3O4-graphene/poly-ethylene glycol-SiO2 as a phase change material for thermal energy storage,” Materials Chemistry and Physics, vol. 310, p. 128457, 2023. DOI: https://doi.org/10.1016/j.matchemphys.2023.128457

W. He, Y. Zhuang, Y. Chen, and C. Wang, “Experimental and numerical investigations on the melting behavior of Fe3O4 nanoparticles composited paraffin wax in a cubic cavity under a magnetic-field,” International Journal of Thermal Sciences, vol. 184, p. 107961, 2023. DOI: https://doi.org/10.1016/j.ijthermalsci.2022.107961

H. Donza, O. Cabrera, and E. F. Irassar, “High-strength concrete with different fine aggregate, Cement and Concrete Research, vol. 32, no. 11, pp. 1755-1761, 2002. DOI: https://doi.org/10.1016/S0008-8846(02)00860-8

R. Et-tanteny, B. El Amrani, I. Manssouri, and H. Limami, “Physicochemical, mechanical and thermal analysis of unfired clay bricks: Kaolinite-PEG 6000 composite,” Cleaner Engineering and Technology” vol. 22, p. 100793, 2024. DOI: https://doi.org/10.1016/j.clet.2024.100793

C. Liu, L. Wang, Y. Li, X. Diao, C. Dong, A. Li, and X. Chen, “Fe3O4/carbon-decorated graphene boosts photothermal conversion and storage of phase change materials,” Journal of Colloid and Interface Science” vol. 657, p. 590-597, 2024. DOI: https://doi.org/10.1016/j.jcis.2023.12.015

A. C. B. Jesus, J. R. Jesus, R. J. S. Lima, K. O. Moura, J. M. A. Almeida, J. G. S. Duque, and C. T. Meneses, “Synthesis and magnetic interaction on concentrated Fe3O4 nanoparticles obtained by the co-precipitation and hydrothermal chemical methods,” Ceramics International, vol. 46, p. 11149-11153, 2020. DOI: https://doi.org/10.1016/j.ceramint.2020.01.135

G. Antarnusa, P. D. Jayanti, Y. R. Denny, and A. Suherman, “Utilization of co-precipitation method on synthesis of Fe3O4/ PEG with different concentrations of PEG for biosensor applications,” Materialia (Oxf), vol. 25, p. 101525, 2022. DOI: https://doi.org/10.1016/j.mtla.2022.101525

B. Lu, Y. Zhang, J. Zhang, J. Zhu, H. Zhao, and Z. Wang, “Preparation, optimization and thermal characterization of paraffin/nano-Fe3O4 composite phase change material for solar thermal energy storage, Journal of Energy Storage, vol. 46 p. 103928, 2022.

Y. Hu, L. Shi, Z. Zhang, Y. He, and J. Zhu, “Magnetic regulating the phase change process of Fe3O4-paraffin wax nanocomposites in a square cavity,” Energy Conversion and Management, vol. 213, p. 112829, 2020. DOI: https://doi.org/10.1016/j.enconman.2020.112829

O. Karaagac, and H. Köçkar, “Improvement of the saturation magnetization of PEG coated superparamagnetic iron oxide nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 551, p. 169140, 2022. DOI: https://doi.org/10.1016/j.jmmm.2022.169140

M. Khoshnam, and H. Salimijazi, “Synthesis and characterization of magnetic-photocatalytic Fe3O4/SiO2/a-Fe2O3 nano core-shell,” Surfaces and Interfaces, vol. 26, p. 101322, 2021. DOI: https://doi.org/10.1016/j.surfin.2021.101322

Astuti, S. Arief, M. Muldarisnur, Zulhadjri, and S. R. A. Usna, “Enhancement in photoluminescence performance of carbon-based Fe3O4@ZnO–C nanocomposites,” Vacuum, vol. 211, p. 111935, 2023. DOI: https://doi.org/10.1016/j.vacuum.2023.111935

D.-L. Zhao, P. Teng, Y. Xu, Q.-S. Xia, and J.-T. Tang, “Magnetic and inductive heating properties of Fe3O4/polyethylene glycol composite nanoparticles with core–shell structure,” Journal of Alloys and Compounds, vol. 502, pp. 392-395, 2010. DOI: https://doi.org/10.1016/j.jallcom.2010.04.177

S. C. Mohanta, A. Saha, and P. S. Devi, “PEGylated iron oxide nanoparticles for pH responsive drug delivery application,” Materials Today: Proceedings, vol. 5, pp. 9715-9725, 2018. DOI: https://doi.org/10.1016/j.matpr.2017.10.158

X. Wang, Y. Zhao, X. Jiang, L. Liu, X. Li, H. Li, and W. Liang, “In-situ self-assembly of plant polyphenol-coated Fe3O4 particles for oleaginous microalgae harvesting,” Journal of Environmental Management, vol. 214, pp. 335-345, 2018. DOI: https://doi.org/10.1016/j.jenvman.2018.03.019

B. Li, D. Shu, R. Wang, L. Zhai, Y. Chai, Y. Lan, H. Cao,and C. Zou, “Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage,” ReNew Energy, vol. 145, pp. 84-92, 2020. DOI: https://doi.org/10.1016/j.renene.2019.05.118

B. Lu, Y. Zhang, J. Zhang, J. Zhu, H. Zhao, and Z. Wang, “Preparation, optimization and thermal characterization of paraffin/nano-Fe3O4 composite phase change material for solar thermal energy storage,” Journal Energy Storage, vol. 46, p. 103928, 2022. DOI: https://doi.org/10.1016/j.est.2021.103928

P. Liu, Z. Yao, V. M. H. Ng, J. Zhou, L. B. Kong, and K. Yue, “Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance,” Composites Part A: Applied Science and Manufacturing, vol. 115, pp. 371-382, 2018. DOI: https://doi.org/10.1016/j.compositesa.2018.10.014

M. Abboud, S. Youssef, J. Podlecki, R. Habchi, G. Germanos, and A. Foucaran, “Superparamagnetic Fe3O4 nanoparticles, synthesis and surface modification,” Materials Science in Semiconductor Processing, vol. 39, pp. 641-648, 2015. DOI: https://doi.org/10.1016/j.mssp.2015.05.035

E. A. Setiadi, P. Sebayang, M. Ginting, A. Y. Sari, C. Kurniawan, C. S. Saragih, and P. Simamora, “The synthesization of Fe3O4 magnetic nanoparticles based on natural iron sand by co-precipitation method for the used of the adsorption of Cu and Pb ions,” Journal of Physics: Conference Series, vol. 776, p. 012020, 2016. DOI: https://doi.org/10.1088/1742-6596/776/1/012020

M. A. Medina, G. Oza, A. Ángeles-Pascual, M. González M., R. Antaño-López, A. Vera, L. Leija, E. Reguera, L. G. Arriaga, J. M. Hernández Hernández, and J. T. Ramírez, “Synthesis, characterization and magnetic hyperthermia of monodispersed cobalt ferrite nanoparticles for cancer therapeutics,” Molecules, vol. 25, p. 4428, 2020. DOI: https://doi.org/10.3390/molecules25194428

J.-L. Huang, L.-Q. Fan, Y. Gu, C.-L. Geng, H. Luo, Y.-F. Huang, J.-M. Lin, and J.-H. Wu, “One-step solvothermal synthesis of high-capacity Fe3O4/reduced graphene oxide composite for use in Li-ion capacitor,” Journal of Alloys and Compounds, vol. 788, pp. 1119-1126, 2019. DOI: https://doi.org/10.1016/j.jallcom.2019.03.004

G. Antarnusa, and E. Suharyadi, “A synthesis of polyethylene glycol (PEG)-coated magnetite Fe3O4 nanoparticles and their characteristics for enhancement of biosensor,” Materials Research Express, vol. 7, p. 056103, 2020. DOI: https://doi.org/10.1088/2053-1591/ab8bef

Y. Harmen, Y. Chhiti, F. E. M’Hamdi Alaoui, F. Bentiss, C. Jama, S. Duquesne, and M. Bensitel, “Thermal performance of PEG-MWCNTs composites as shape-stabilised phase change materials for thermal energy storage,” Fullerenes, Nanotubes and Carbon Nanostructures, vol. 29, pp. 732-738, 2021.

S. A. B. Al-Omari, Z. A. Qureshi, F. Mahmoud, and E. Elnajjar, “Thermal management characteristics of a counter-intuitive finned heat sink incorporating detached fins impregnated with a high thermal conductivity-low melting point PCM,” International Journal of Thermal Sciences, vol. 175, p. 107396, 2022. DOI: https://doi.org/10.1016/j.ijthermalsci.2021.107396

M. A. Fikri, A. K. Pandey, M. Samykano, K. Kadirgama, M. George, R. Saidur, J. Selvaraj, N. A. Rahim, K. Sharma, and V. V. Tyagi, “Thermal conductivity, reliability, and stability assessment of phase change material (PCM) doped with functionalized multi-wall carbon nanotubes (FMWCNTs),” Journal Energy Storage, vol. 50, p. 104676, 2022. DOI: https://doi.org/10.1016/j.est.2022.104676

S. Wu, T. Yan, Z. Kuai, and W. Pan, “Thermal conductivity enhancement on phase change materials for thermal energy storage: A review,” Energy Storage Materials, vol. 25, pp. 251-295, 2020.

N. Şahan, M. Fois, and H. Paksoy, “Improving thermal conductivity phase change materials - A study of paraffin nano-magnetite composites,” Solar Energy Materials and Solar Cells, vol. 137, pp. 61-67, 2015. DOI: https://doi.org/10.1016/j.solmat.2015.01.027

R. Bharathiraja, T. Ramkumar, M. Selvakumar, and N. Radhika, “Thermal characteristics enhancement of Paraffin Wax Phase Change Material (PCM) for thermal storage applications,” ReNew Energy, vol. 222, p. 119986, 2024. DOI: https://doi.org/10.1016/j.renene.2024.119986

N. H. Mohamed, F. S. Soliman, H. El Maghraby, and Y. M. Moustfa, “Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: Energy storage,” Renewable and Sustainable Energy Reviews, vol. 70, pp. 1052-1058, 2017. DOI: https://doi.org/10.1016/j.rser.2016.12.009

X. Li, X. Sheng, Y. Guo, X. Lu, H. Wu, Y. Chen, L. Zhang, and J. Gu, “Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities,” Journal of Materials Science and Technology, vol. 86, pp. 171-179, 2021. DOI: https://doi.org/10.1016/j.jmst.2021.02.009

X. Cheng, Q. Feng, W. Ni, X. Li, Y. Qi, S. Zhang, Q. Wu, and Z. Huang, “Stable and reliable PEG/TiO2 phase change composite with enhanced thermal conductivity based on a facile sol-gel method without deionized water,” Journal Energy Storage, vol. 89, p. 111705, 2024.

M. N. Sam, A. Caggiano, C. Mankel, and E. Koenders, “A comparative study on the thermal energy storage performance of bio-based and paraffin-based PCMs using DSC procedures,” Materials, vol. 13, no. 13, p. 1705, 2020. DOI: https://doi.org/10.3390/ma13071705

B. K. Choure, T. Alam, and R. Kumar, “A review on heat transfer enhancement techniques for PCM based thermal energy storage system,” Journal Energy Storage, vol. 72, p. 108161, 2023. DOI: https://doi.org/10.1016/j.est.2023.108161

P. K. S. Rathore, and S. K. Shukla, “An experimental evaluation of thermal behavior of the building envelope using macro-encapsulated PCM for energy savings,” ReNew Energy, vol. 149, pp. 1300-1313, 2020. DOI: https://doi.org/10.1016/j.renene.2019.10.130

T. Qian, J. Li, X. Min, W. Guan, Y. Deng, and L. Ning, “Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage,” Journal of Materials Chemistry A, vol. 3, no. 16, pp. 8526-8536, 2015. DOI: https://doi.org/10.1039/C5TA00309A

Y. Harmen, Y. Chhiti, F. E. M’Hamdi Alaoui, F. Bentiss, C. Jama, S. Duquesne, and M. Bensitel, “Thermal performance of PEG-MWCNTs composites as shape-stabilised phase change materials for thermal energy storage,” Fullerenes, Nanotubes and Carbon Nanostructures, vol. 29, pp. 732-738, 2021. DOI: https://doi.org/10.1080/1536383X.2021.1887146

X. Cheng, Q. Feng, W. Ni, X. Li, Y. Qi, S. Zhang, Q. Wu, and Z. Huang, “Stable and reliable PEG/TiO2 phase change composite with enhanced thermal conductivity based on a facile sol-gel method without deionized water,” Journal Energy Storage, vol. 89, p. 111705, 2024. DOI: https://doi.org/10.1016/j.est.2024.111705

S. P. Chitriv, K. Dharmadhikari, A. Nithin, A. S. Archak, R. P. Vijayakumar, and G. C. DSouza, “Unzipped multiwalled carbon nanotube oxide/PEG based phase change composite for latent heat energy storage,” International Journal of Heat and Mass Transfer, vol. 220, p. 124908, 2024. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124908

H. Jouhara, A. Żabnieńska-Góra, N. Khordehgah, D. Ahmad, and T. Lipinski, “Latent thermal energy storage technologies and applications: A review,” International Journal of Thermofluids, vol. 5-6, p. 100039, 2020. DOI: https://doi.org/10.1016/j.ijft.2020.100039

S. Wu, T. Yan, Z. Kuai, and W. Pan, “Thermal conductivity enhancement on phase change materials for thermal energy storage: A review,” Energy Storage Materials, vol. 25, pp. 251-295, 2020. DOI: https://doi.org/10.1016/j.ensm.2019.10.010

Y. Lin, Y. Jia, G. Alva, and G. Fang, “Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 2730-2742, 2018. DOI: https://doi.org/10.1016/j.rser.2017.10.002

G. Alva, Y. Lin, and G. Fang, “An overview of thermal energy storage systems,” Energy, vol. 144, pp. 341-378, 2018. DOI: https://doi.org/10.1016/j.energy.2017.12.037

J. Li, Q. Chang, C. Xue, J. Yang, and S. Hu, “Carbon dots efficiently enhance photothermal conversion and storage of organic phase change materials through interfacial interaction,” Carbone New York, vol. 203, pp. 21-28, 2023. DOI: https://doi.org/10.1016/j.carbon.2022.11.046

ดาวน์โหลด

เผยแพร่แล้ว

2025-08-13

วิธีการอ้างอิง

[1]
M. FAUZI, “Macro-encapsulation of polyethylene glycol and magnetite (Fe\(_{3}\)O\(_{4}\)) in concrete as phase change materials for building thermal management”, J Met Mater Miner, ปี 35, ฉบับที่ 3, น. e2310, ส.ค. 2025.