Synthesis, structure, and electrochemical properties of the Ni(OH)\(_{2}\)/NiMoO\(_{4}\) composite on the rGO/NF template for hybrid battery-supercapacitor electrodes

ผู้แต่ง

  • Retno ASIH Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Haniffudin NURDIANSAH Department of Material and Metallurgical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Rogabe SIANIPAR Department of Material and Metallurgical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Ida Ayu GAYATRI Department of Material and Metallurgical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Lukman NOEROCHIM Department of Material and Metallurgical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Diah SUSANTI Department of Material and Metallurgical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Isao WATANABE Nuclear Structure Research Group, RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
  • Darminto DARMINTO Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia

DOI:

https://doi.org/10.55713/jmmm.v36i1.2309

คำสำคัญ:

electrochemical performance, electrode, hybrid battery-supercapacitor, Ni(OH)2/NiMoO4/rGO/NF

บทคัดย่อ

The growing demand for renewable and sustainable energy has intensified research on advanced energy-storage systems that can deliver both high energy and power densities. In this study, a Ni(OH)2/ NiMoO4 composite on a reduced graphene oxide/nickel foam (rGO/NF) template was synthesized through a hydrothermal and electrodeposition route to construct a hybrid battery-supercapacitor electrode. The unique hierarchical design combines the pseudocapacitive activity of Ni(OH)2/NiMoO4 with the excellent conductivity of rGO and the high surface area of NF, enabling efficient electron and ion transport. Structural and morphological analyses confirm the successful formation of the Ni(OH)2/NiMoO4/rGO/NF architecture. The electrode exhibits a specific capacitance (Cs) of ~358 F∙g‒1 at 5 mV∙s‒1, an energy density of ~24 Wh∙kg‒1, a power density of ~626 W∙kg‒1, a conductivity of 1.30 S∙m‒1 (0.01 kHz), and retains ~86% capacitance after 50 cycles. These findings demonstrate that the synergistic integration of multiredox Ni(OH)2/NiMoO4 with conductive rGO/NF enhances electrochemical performance, providing effective design strategy for developing hybrid battery-supercapacitor electrodes.

Downloads

Download data is not yet available.

เอกสารอ้างอิง

“Home | Statistical Review of World Energy.” Accessed: Dec. 10, 2024. [Online]. Available: https://www.energyinst.org/statistical-review

J. L. Holechek, H. M. E. Geli, M. N. Sawalhah, and R. Valdez, “A global assessment: can renewable energy replace fossil fuels by 2050?,” Sustainability, vol. 14, no. 8, p. 4792, 2022. DOI: https://doi.org/10.3390/su14084792

S. Najib, and E. Erdem, “Current progress achieved in novel materials for supercapacitor electrodes: mini review,” Nanoscale Advances, vol. 1, no. 8, pp. 2817–2827, 2019. DOI: https://doi.org/10.1039/C9NA00345B

F. Naseri, S. Karimi, E. Farjah, and E. Schaltz, “Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques,” Renewable and Sustainable Energy Reviews, vol. 155, p. 111913, 2022. DOI: https://doi.org/10.1016/j.rser.2021.111913

H. Li, H. Xuan, J, Gao, T. Liang, X. Han, Y. Guan, J. Yang, P. Han, and Y. Du, “Construction of core-shell cobalt sulfide/ manganese molybdate nanostructure on reduced graphene oxide/ Ni foam as an advanced electrode for high-performance asymmetric supercapacitor,” Electrochimica Acta, vol. 312, pp. 213–223, 2019. DOI: https://doi.org/10.1016/j.electacta.2019.05.008

E. T. Mombeshora, and E. Muchuweni, “Dynamics of reduced graphene oxide: Synthesis and structural models,” RSC Advances, vol. 13, no. 26, pp. 17633–17655, 2023. DOI: https://doi.org/10.1039/D3RA02098C

R. Asih, H. Nurdiansah, M. Zainuri, D. S. Khaerudini, A. T. Setiawan, A. Y. Dias, P. Untoro, A. Sholih, and Darminto, “Simple and high-yield synthesis of a thinner layer of graphenic carbon from coconut shells,” Journal of Renewable Materials, vol. 12, no. 5, pp. 969–979, 2024. DOI: https://doi.org/10.32604/jrm.2024.049097

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon N Y, vol. 45, no. 7, pp. 1558‒1565, 2007. DOI: https://doi.org/10.1016/j.carbon.2007.02.034

A. T. Smith, A. M. LaChance, S. Zeng, B. Liu, and L. Sun, “Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites,” Nano Materials Science, vol. 1, no. 1, 2019. DOI: https://doi.org/10.1016/j.nanoms.2019.02.004

P. K. Sahoo, N. Kumar, A. Jena, S. Mishra, C.-P. Lee, S-Y. Lee, and S-J. Park, “Recent progress in graphene and its derived hybrid materials for high-performance supercapacitor electrode applications,” RSC Advances, vol. 14, no. 2, pp. 1284‒1303, 2024. DOI: https://doi.org/10.1039/D3RA06904D

P. Kantichaimongkol, T. Wanotayan, and J. Qin, “Review on surface engineering of NMC for high performance of lithium-ion batteries,” Journal of Metals, Materials and Minerals, vol. 35, no. 2, p. e2338, 2025. DOI: https://doi.org/10.55713/jmmm.v35i2.2338

R. Zhang, Q. Tu, X. Li, X. Sun, X. Liu, and L. Chen, “Template-free preparation of α-Ni(OH)2 nanosphere as high-performance electrode material for advanced supercapacitor,” Nanomaterials, vol. 12, no. 13, p. 2216, 2022. DOI: https://doi.org/10.3390/nano12132216

J. Li, X. Chang, X. Zhou, and M. Zhang, “Design of Ni(OH)2 nanosheets@NiMoO4 nanofibers’ hierarchical structure for asymmetric supercapacitors,” Nanomaterials, vol. 12, no. 22, p. 4079, 2022. DOI: https://doi.org/10.3390/nano12224079

X. Zhang, and Y. Xu, “The fabrication of hierarchical NiMoO4 @Ni(OH)2 nanocomposites and its electrochemical behavior used as supercapacitor electrode,” Inorganic Chemistry Communications, vol. 87, pp. 8‒11, 2018. DOI: https://doi.org/10.1016/j.inoche.2017.11.013

Y. Zhang, C.-r. Chang, H.-l. Gao, S.-w. Wang, J. Yan, K.-z. Gao, X.-d. Jia, H.w. Luo, H. Fang, A.-q. Zhang, and L-z. Wang, “High-performance supercapacitor electrodes based on NiMoO4 nanorods,” Jounal of Materials Research, vol. 34, no. 14, pp. 2435‒2444, 2019. DOI: https://doi.org/10.1557/jmr.2019.165

T. Mawintorn, K. Lolupiman, N. Kiatwisarnkij, P. Woottapanit, M. Karnan, S. S. Na Ayuttaya, X. Zhang, P. Wangyao, and J. Qin, “Fabrication and characterization of zinc anode on nickel conductive cloth for high-performance zinc ion battery applications,” Journal of Metals, Materials and Minerals, vol. 34, no. 3, p. e2083, 2024. DOI: https://doi.org/10.55713/jmmm.v34i3.2083

X. Ling, F. Du, Y. Zhang, Y. Shen, T. Li, A. Alsaedi, T. Hayat, Y. Zhou, and Z. Zou, “Preparation of an Fe2Ni MOF on nickel foam as an efficient and stable electrocatalyst for the oxygen evolution reaction,” RSC Advances, vol. 9, no. 57, pp. 33558‒33562, 2019. DOI: https://doi.org/10.1039/C9RA07499F

D. C. Marcano, D. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. Tour, “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, no. 8, pp. 4806‒4814, 2010. DOI: https://doi.org/10.1021/nn1006368

Y. Xu, H. Xuan, J. Gao, T. Liang, X. Han, J. Yang, Y. Zhang, H. Li, P. Han, and Y. Du, “Hierarchical three-dimensional NiMoO4-anchored rGO/Ni foam as advanced electrode material with improved supercapacitor performance,” Journal of Materials Science, vol. 53, no. 11, pp. 8483‒8498, 2018. DOI: https://doi.org/10.1007/s10853-018-2171-1

M. Yao, Z. Hu, Y. Liu, and P. Liu, “A novel synthesis of size-controllable mesoporous NiMoO4 nanospheres for supercapacitor applications,” Ionics, vol. 22, no. 5, pp. 1‒9, 2016. DOI: https://doi.org/10.1007/s11581-015-1587-8

A. P. De Moura, L. H. Oliveira, I. L. V. Rosa, C. S. Xavier, P. Lisboa-Filho, M. S. Li, F. L. Porta, E. Longo, and J. A. Varela, “Structural, optical, and magnetic properties of NiMoO nanorods prepared by microwave sintering,” Scientific World Journal, vol. 2015, no. 1, p. 315084, 2015. DOI: https://doi.org/10.1155/2015/315084

E. G. C. Neiva, M. M. Oliveira, M. F. Bergamini, L. H. Marcolino, and A. J. G. Zarbin, “One material, multiple functions: Graphene/ Ni(OH)2 thin films applied in batteries, electrochromism and sensors,” Scientific Reports, vol. 6, p. 33806, 2016. DOI: https://doi.org/10.1038/srep33806

D. Ristiani, R. Asih, F. Astuti, M. Baqiya, C. Kaewhan, S. Tunmee, H. Nakajima, S. Soontaranon, and D. Darminto, “Mesostructural study on graphenic-based carbon prepared from coconut shells by heat treatment and liquid exfoliation.,” Heliyon, vol. 8, no. 3, p. e09032, 2022. DOI: https://doi.org/10.1016/j.heliyon.2022.e09032

M. Jiang, Z. Hu, Y. Wang, C. Xiang, Y. Zou, F. Xu, Q. Yang, J. Zhang, and L. Sun, “NiMoO4 @Co3S4 nanorods with core-shell structure for efficient hydrogen evolution reactions in electrocatalysts,” Journal of Alloys and Compounds, vol. 927, p. 166824, 2022. DOI: https://doi.org/10.1016/j.jallcom.2022.166824

L. Yedra, C. N. S. Kumar, A. Pshenova, E. Lentzen, P. Philipp, T. Wirtz, and S. Eswara, “A correlative method to quantitatively image trace concentrations of elements by combined SIMS-EDX analysis,” Journal of Analytical Atomic Spectrometry, vol. 36, no. 1, pp. 56–63, 2021. DOI: https://doi.org/10.1039/D0JA00289E

J. Zhang, W. Xiang, Y. Liu, M. Hu, and K. Zhao, “Synthesis of high-aspect-ratio nickel nanowires by dropping method,” Nanoscale Research Letters, vol. 11, no. 1, pp. 1–5, 2016. DOI: https://doi.org/10.1186/s11671-016-1330-z

S. Zhang, M. Cen, Q. Wang, X. Luo, W. Peng, Y. Li, F. Zhang, and X. Fan, “Complete reconstruction of NiMoO4/NiFe LDH for enhanced oxygen evolution reaction,” Chemical Communications, vol. 59, no. 23, pp. 3427‒3430, 2023. DOI: https://doi.org/10.1039/D2CC06879F

W. H. Sun, and X. Zhang, “NiMoO4–mediated fabrication of Ni-based electrocatalyst for efficient water splitting,” Renewable Energy, vol. 241, p. 122312, 2025. DOI: https://doi.org/10.1016/j.renene.2024.122312

Y. H. Chung, I. Jang, J.-H. Jang, H. S. Park, H. C. Ham, J. H. Jang, Y.-K. Lee, and S. J. Yoo, “Anomalous in situ activation of carbon-supported Ni2P nanoparticles for oxygen evolving electrocatalysis in alkaline media,” Scientific Report, vol. 7, no. 1, pp. 1–8, 2017. DOI: https://doi.org/10.1038/s41598-017-08296-0

S. Fleischmann, J. B. Mitchell, R. Wang, C. Zhan, D-en. Jiang, V. Presser, and V. Augustyn, “Pseudocapacitance: From fundamental understanding to high power energy storage materials,” Chemical Reviews, vol. 120, no. 14, pp. 6738-6782, 2020. DOI: https://doi.org/10.1021/acs.chemrev.0c00170

Y. Hao, X. Cao, C. Lei, Z. Chen, X. Yang, and M. Gong, “Chemical oxygen species on electrocatalytic materials during oxygen evolution reaction,” Materials Today Catalysis, vol. 2, p. 100012, 2023. DOI: https://doi.org/10.1016/j.mtcata.2023.100012

C. Sandford, M. A. Edwards, K. J. Klunder, D. P. Hickey, M. Li, K. Barman, M. S. Sigman, H. S. White, and S. D. Minteer, “A synthetic chemist’s guide to electroanalytical tools for studying reaction mechanisms,” Chemical Science, vol. 10, no. 26, pp. 6404‒6422, 2019. DOI: https://doi.org/10.1039/C9SC01545K

L. Xu, H. Chen, and K. Shu, “Ni(OH)2/RGO nanosheets constituted 3D structure for high-performance supercapacitors,” Journal of Sol-Gel Science and Technology, vol. 77, no. 2, pp. 463–469, 2016. DOI: https://doi.org/10.1007/s10971-015-3876-0

H. Liu, B. Liu, X. Sun, X. Han, J. Cui, Y. Zhang, and W. He, “A simple hydrothermal method for the preparation of 3D petal-like Ni(OH)2/g-C3N4/RGO composite with good supercapacitor performance,” Inorganic Chemistry Communications, vol. 122, p. 108263, 2020, DOI: https://doi.org/10.1016/j.inoche.2020.108263

Y. Zhang, H-l. Gao, X-d. Jia, S-w. Wang, J. Yan, H-w. Luo, K-z. Gao, H. Fang, A-q. Zhang, and L-z. Wang, “NiMoO4 nanorods supported on nickel foam for high-performance supercapacitor electrode materials,” Journal of Renewable and Sustainable Energy, vol. 10, no. 5, p. 054101, 2018. DOI: https://doi.org/10.1063/1.5032271

G. Jiang, M. Zhang, X. Li, and H. Gao, “NiMoO4@Ni(OH)2 core/shell nanorods supported on Ni foam for high-performance supercapacitors,” RSC Advances, vol. 5, no. 85, pp. 69365–69370, 2015, DOI: https://doi.org/10.1039/C5RA11960J

X. Li, S. Y. Lin, M. Zhang, G. Jiang, and H. Gao, “Construction of hierarchical Ni(OH)2@CoMoO4 nanoflake composite for high-performance supercapacitors,” Nano, vol. 11, no. 5, p. 1650050, 2016. DOI: https://doi.org/10.1142/S1793292016500508

I. K. Durga, D. K. Kulurumotlakatle, T. Ramachandran, Y. A. Kumar, D. A. Reddy, K. V. G. Raghavendra, A. A. Alothman, and S. S. Rao, “Synergy unleashed: NiMoO4/WO3/NF nanoflowers elevate for supercapacitor performance,” Journal of Physics and Chemistry of Solids, vol. 186, p. 111811, 2024. DOI: https://doi.org/10.1016/j.jpcs.2023.111811

S. Rajkumar, R. Prabakaran, S. Elaissi, and J. Princy Merlin, “Construction of nanostructured Mo4V6O25 electrode material for high-performance asymmetric supercapacitors,” Journal of Inorganic and Organometallic Polymers and Materials, pp. 1–10, 2025. DOI: https://doi.org/10.1007/s10904-025-03864-8

R. Srinivasan, G. Krishnan, K. Mathivanan, S. Dhineshkumar, S. Ansar, P. Mohan, and J. P. Merlin, “One-step synthesis of nanostructured Ag2Mo2O7 with enhanced efficiency for super-capacitors,” Ionics, vol. 30, no. 11, pp. 7537–7549, 2024. DOI: https://doi.org/10.1007/s11581-024-05755-3

S. Rajkumar, M. Karthikeyan, A. Manohar, S. Dhineshkumar, and J. Princy Merlin, “One-step synthesis and fabrication of ZrMo2O8 nanostructures as advanced electrode material for energy storage applications,” Journal of Industrial and Engineering Chemistry, vol. 137, pp. 162–173, 2024. DOI: https://doi.org/10.1016/j.jiec.2024.03.002

A. Sathiyan, S. Rajkumar, S. Dhineshkumar, and J. Princy Merlin, “Electrochemical performance of SrMoO4 as electrode material for energy storage systems,” Journal of Industrial and Engineering Chemistry, vol. 129, pp. 521–530, 2024. DOI: https://doi.org/10.1016/j.jiec.2023.09.011

ดาวน์โหลด

เผยแพร่แล้ว

2026-02-06

วิธีการอ้างอิง

[1]
R. ASIH, “Synthesis, structure, and electrochemical properties of the Ni(OH)\(_{2}\)/NiMoO\(_{4}\) composite on the rGO/NF template for hybrid battery-supercapacitor electrodes”, J Met Mater Miner, ปี 36, ฉบับที่ 1, น. e2309, ก.พ. 2026.