Impacts of calcination temperature on the crystallography, granulometry and impedance of LiCoMnO\(_{4}\)
DOI:
https://doi.org/10.55713/jmmm.v35i4.2379Keywords:
Sol-gel, Calcination, Granulometry, Fluorination, LiCoMnO4Abstract
Spinel structured lithium cobalt manganese oxide (LiCoMnO4) which exhibit reduction potential surpassing 5.0 V (vs. Li0 | Li+) was identified to be one of the prospective cathode candidates for next generation lithium-ion electrochemical systems. This article highlights the significance of calcination temperature on the crystallography of the resultant electroceramic compound as well as the corresponding response on the granulometry and impedance of LiCoMnO4. LiCoMnO4 compounds synthesised via sol-gel reaction in the first instance were converted into xerogel and subsequently subjected to facile one-step calcination protocol. Crystallography of the post-calcinated compounds were characterised via powder x-ray diffraction (XRD) technique. Temperature ranging between 600℃ to 700℃ was identified to be the critical process window which enabled the formation of single phase LiCoMnO4. Granulometry of the LiCoMnO4 compound synthesised at 600℃ and 700℃ were characterised in term of morphology and particle size distribution. LiCoMnO4 calcinated at 600℃ attained smaller particle size distribution and renders in relatively lower charge transfer impedance as compared to the specimen subjected to calcination at 700℃ with relatively larger particle size distribution.
Downloads
References
N. Reeves-McLaren, M. Hong, H. Alqurashi, L. Xue, J. Sharp, A. J. Rennie, and R. Boston, "The spinel LiCoMnO4: 5V cathode and conversion anode," Energy Procedia, vol. 151, pp. 158-162, 2018. DOI: https://doi.org/10.1016/j.egypro.2018.09.041
R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, "A review of advanced and practical lithium battery materials," Journal of Materials Chemistry, vol. 21, no. 27, pp. 9938-9954, 2011. DOI: https://doi.org/10.1039/c0jm04225k
C. M. Julien, and A. Mauger, "Review of 5-V electrodes for Li-ion batteries: Status and trends," Ionics, vol. 19, no. 7, pp. 951-988, 2013. DOI: https://doi.org/10.1007/s11581-013-0913-2
D. Liu, W. Zhu, J. Trottier, C. Gagnon, F. Barray, A. Guerfi, A. Mauger, H. Groult, C. M. Julien, J. B. Goodenough, and K. Zaghib, "Spinel materials for high-voltage cathodes in Li-ion batteries," RSC Advances, vol. 4, no. 1, pp. 154-167, 2014. DOI: https://doi.org/10.1039/C3RA45706K
H. F. Lin, S. T. Cheng, D. Z. Chen, N. Y. Wu, Z. X. Jiang, and C. T. Chang, "Stabilizing Li-rich layered cathode materials using a LiCoMnO4 spinel nanolayer for Li-Ion batteries," Nanomaterials, vol. 12, no. 19, p. 3425, 2022 DOI: https://doi.org/10.3390/nano12193425
K. Dai, J. Mao, Z. Li, Y. Zhai, Z. Wang, X. Song, V. Battaglia, and G. Liu, "Microsized single-crystal spinel LAMO for high-power lithium ion batteries synthesized via polyvinylpyrrolidone combustion method," Journal of Power Sources, vol. 248, pp. 22-27, 2014. DOI: https://doi.org/10.1016/j.jpowsour.2013.09.058
T. Ohzuku, K. Ariyoshi, S. Takeda, and Y. Sakai, "Synthesis and characterization of 5 V insertion material of Li[FeyMn2−y]O4 for lithium-ion batteries," Electrochimica Acta, vol. 46, pp. 2327-2336, 2001. DOI: https://doi.org/10.1016/S0013-4686(00)00725-8
C. Sigala, A. Verbaere, J. L. Mansot, D. Guyomard, Y. Piffard, and M. Tournoux, "The Cr-substituted spinel Mn oxides LiCryMn2-yO4 (0 DOI: https://doi.org/10.1006/jssc.1997.7476
J. Akimoto, Y. Gotoh, and Y. Takahashi, "Crystal growth of spinel-type LiMxMn2-xO4 (M = Cr, Co, Ni) in High-temperature molten chlorides," Crystal Growth & Design, vol. 3, pp. 627-629, 2003. DOI: https://doi.org/10.1021/cg025603w
J. T. Son, and H. G. Kim, "New investigation of fluorine-substituted spinel LiMn2O4−F by using sol–gel process," Journal of Power Sources, vol. 147, no. 1-2, pp. 220-226, 2005. DOI: https://doi.org/10.1016/j.jpowsour.2004.12.006
X. Huang, M. Lin, Q. Tong, X.,Li, Y.,Ruan, and Y. Yang, "Synthesis of LiCoMnO4 via a sol–gel method and its application in high power LiCoMnO4/Li4Ti5O12 lithium-ion batteries," Journal of Power Sources, vol. 202, pp. 352-356, 2012. DOI: https://doi.org/10.1016/j.jpowsour.2011.11.028
H. Chen, X. Yang, P.-S. Zhang, L. Liang, Y.-Z. Hong, Y.-J. Wei, G. Chen, F. Du, and C.-Z. Wang, "Observation of spin glass transition in spinel LiCoMnO4," Chinese Physics B, vol. 24, no. 12, pp. 1275011-1275015, 2015. DOI: https://doi.org/10.1088/1674-1056/24/12/127501
A. Windmüller, C.-L. Tsai, S. Möller, M. Balski, Y. J. Sohn, S. Uhlenbruck, and O. Guillon, "Enhancing the performance of high-voltage LiCoMnO4 spinel electrodes by fluorination," Journal of Power Sources, vol. 341, pp. 122-129, 2017. DOI: https://doi.org/10.1016/j.jpowsour.2016.11.100
Y. Arinicheva, M. Wolff, S. Lobe, C. Dellen, D. Fattakhova-Rohlfing, O. Guillon, D. Böhm, F. Zoller, R. Schmuch, J. Li, M. Winter, E. Adamczyk, and V. Pralong, "Ceramics for electro-chemical storage," in Advanced Ceramics for Energy Conversion and Storage, pp. 549-709, 2020. DOI: https://doi.org/10.1016/B978-0-08-102726-4.00010-7
C. Dräger, F. Sigel, S. Indris, D. Mikhailova, L. Pfaffmann, M. Knapp, and H. Ehrenberg, "Delithiation/relithiation process of LiCoMnO4 spinel as 5 V electrode material," Journal of Power Sources, vol. 371, pp. 55-64, 2017. DOI: https://doi.org/10.1016/j.jpowsour.2017.10.039
F. Schipper, E. M. Erickson, C. Erk, J.-Y. Shin, F. F. Chesneau, and D. Aurbach, "Review—recent advances and remaining challenges for lithium ion battery cathodes," Journal of The Electrochemical Society, vol. 164, no. 1, pp. A6220-A6228, 2016. DOI: https://doi.org/10.1149/2.0351701jes
K. Ariyoshi, H. Yamamoto, and Y. Yamada, "Synthesis optimization of electrochemically active LiCoMnO4 for high-voltage lithium-ion batteries," Energy & Fuels, vol. 35, no. 16, pp. 13449-13456, 2021. DOI: https://doi.org/10.1021/acs.energyfuels.1c01866
Z. I. Radzi, V. Balakrishnan, A. K. Pandey, M. Z. Kufian, N. A. Rahim, S. R. S. Raihan, and S. Ramesh, "Structural, electrical and electrochemical characterization of hybrid morphological LiNi0.5Mn1.5O4 cathode material," Physica B: Condensed Matter, vol. 624, pp. 1-14, 2022. DOI: https://doi.org/10.1016/j.physb.2021.413376
K. Guo, S. Qi, H. Wang, J. Huang, M. Wu, Y. Yang, X. Li, Y. Ren, and J. Ma, "High‐voltage electrolyte chemistry for lithium batteries," Small Science, vol. 2, no. 5, pp. 1-18, 2022. DOI: https://doi.org/10.1002/smsc.202100107
Z. Wang, J. Chen, J. Fu, Z. Li, and X. Guo, "Polymer-based electrolytes for high-voltage solid-state lithium batteries," Energy Materials, vol. 4, no. 4, pp. 1-24, 2024. DOI: https://doi.org/10.20517/energymater.2023.130
L. Dong, S. Zhong, B. Yuan, Y. Ji, J. Liu, Y. Liu, C. Yang, J. Han, and W. He, "Electrolyte engineering for high-voltage lithium metal batteries," Research, vol. 2022, pp. 1-52, 2022. DOI: https://doi.org/10.34133/2022/9837586
C. Zhang, "High-voltage electrolytes," Nature Energy, vol. 4, no. 5, pp. 350, 2019. DOI: https://doi.org/10.1038/s41560-019-0394-2
L. Chen, X. Fan, E. Hu, X. Ji, J. Chen, S. Hou, T. Deng, J. Li, D. Su, X. Yang, and C. Wang, "Achieving high energy density through increasing the output voltage: A highly reversible 5.3 V battery," Chem, vol. 5, no. 4, pp. 896-912, 2019. DOI: https://doi.org/10.1016/j.chempr.2019.02.003
L. Xia, Y. Xia, C. Wang, H. Hu, S. Lee, Q. Yu, H. Chen, and Z. Liu, "5 V-class electrolytes based on fluorinated solvents for Li-ion batteries with excellent cyclability," ChemElectroChem, vol. 2, no. 11, pp. 1707-1712, 2015. DOI: https://doi.org/10.1002/celc.201500286
W.-H. Hou, Y. Lu, Y. Ou, P. Zhou, S. Yan, X. He, X. Geng, and K. Liu, "Recent advances in electrolytes for high-voltage cathodes of lithium-ion batteries," Transactions of Tianjin University, vol. 29, no. 2, pp. 120-135, 2023. DOI: https://doi.org/10.1007/s12209-023-00355-0
X. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. Han, J. Yue, N. Piao, R. Wang, X. Zhou, X. Xiao, L. Chen, and C. Wang, "All-temperature batteries enabled by fluorinated electrolytes with non-polar
solvents," Nature Energy, vol. 4, no. 10, pp. 882-890, 2019. DOI: https://doi.org/10.1038/s41560-019-0474-3
H. Xia, Z. Luo, and J. Xie, "Nanostructured lithium titanate and lithium titanate/carbon nanocomposite as anode materials for advanced lithium-ion batteries," Nanotechnology Reviews, vol. 3, no. 2, pp. 161-175, 2014. DOI: https://doi.org/10.1515/ntrev-2012-0049
K. Ariyoshi, H. Yamamoto, and Y. Yamada, "High dimensional stability of LiCoMnO4 as positive electrodes operating at high voltage for lithium-ion batteries with a long cycle life," Electro-chimica Acta, vol. 260, pp. 498-503, 2018. DOI: https://doi.org/10.1016/j.electacta.2017.12.064
N. Reeves-McLaren, J. Sharp, H. Beltran-Mir, W. M. Rainforth, and A. R. West, "Spinel-rock salt transformation in LiCoMnO4-δ," Proceedings of the Royal Society A, vol. 472, no. 2185, pp. 1-20, 2016. DOI: https://doi.org/10.1098/rspa.2014.0991
H. Kawai, M. Nagata, H. Tukamoto, and A. R. Westa, "A new lithium cathode LiCoMnO4 toward practical 5 V lithium batteries," Electrochemical and Solid-State Letters, vol. 1, no. 5, 1999. DOI: https://doi.org/10.1149/1.1390688
Y. Hamada, N. Hamao, K. Kataoka, N. Ishida, Y. Idemoto, and J. Akimoto, "Single crystal synthesis, crystal structure and electrochemical property of spinel-type LiCoMnO4 as 5V positive electrode materials," Journal of the Ceramic Society of Japan, vol. 124, no. 6, pp. 706-709, 2016. DOI: https://doi.org/10.2109/jcersj2.16020
A. Windmüller, C. Dellen, S. Lobe, C.-L. Tsai, S. Möller, Y. J. Sohn, N. Wettengl, M. Finsterbusch, S. Uhlenbruck, and O. Guillon, "Thermal stability of 5 V LiCoMnO4 spinels with LiF additive," Solid State Ionics, vol. 320, pp. 378-386, 2018. DOI: https://doi.org/10.1016/j.ssi.2018.03.026
M. You, X. Huang, M. Lin, Q. Tong, X. Li, Y. Ruan, and Y. Yang, "Preparation of LiCoMnO4 assisted by hydrothermal approach and its electrochemical performance," American Journal of Engineering and Applied Sciences, vol. 9, no. 2, pp. 396-405, 2016. DOI: https://doi.org/10.3844/ajeassp.2016.396.405
J.-E. Zhou, J. Chen, X. Zhang, A. Zeb, and X. Lin, "Molecular and atomic manipulation of metal-organic framework-derived LiCoMnO4: An oxygen-deficient strategy for advanced lithium storage," Journal of Energy Chemistry, vol. 75, pp. 216-228, 2022. DOI: https://doi.org/10.1016/j.jechem.2022.08.028
H.-F. Lin, Y.-R. Tsai, C.-H. Cheng, S.-T. Cheng, D.-Z. Chen, and N.-Y. Wu, "Structural and electrochemical properties of LiCoMnO4 doped with Mg, La, and F as a high-voltage cathode material for lithium ion batteries," Electrochimica Acta, vol. 427, pp. 1-14, 2022. DOI: https://doi.org/10.1016/j.electacta.2022.140904
S. Liu, H. He, and C. Chang, "Understanding the improvement of fluorination in 5.3 V LiCoMnO4 spinel," Journal of Alloys and Compounds, vol. 860, pp. 1-9, 2021. DOI: https://doi.org/10.1016/j.jallcom.2020.158468
D. Pasero, S. de Souza, N. Reeves, and A. R. West, "Oxygen content and electrochemical activity of LiCoMnO4–δ," Journal of Materials Chemistry, vol. 15, no. 41, pp. 4435-4440, 2005. DOI: https://doi.org/10.1039/b508521g
J. Ko, and Y. S. Yoon, "Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries?," Ceramics International, vol. 45, no. 1, pp. 30-49, 2019. DOI: https://doi.org/10.1016/j.ceramint.2018.09.287
A. Windmüller, C. A. Bridges, C.-L. Tsai, S. Lobe, C. Dellen, G. M. Veith, M. Finsterbusch, S. Uhlenbruck, and O. Guillon, "Impact of fluorination on phase stability, crystal chemistry, and capacity of LiCoMnO4 high voltage spinels," ACS Applied Energy Materials, vol. 1, no. 2, pp. 715-724, 2018. DOI: https://doi.org/10.1021/acsaem.7b00186
J. Mosa, and M. Aparicio, "lithium intercalation materials for battery prepared by sol–gel method," in Handbook of Sol-Gel Science and Technology, Springer International Publishing, pp. 1-36, 2017. DOI: https://doi.org/10.1007/978-3-319-19454-7_108-1
A. E. Danks, S. R. Hall, and Z. Schnepp, "The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis," Materials Horizons, vol. 3, no. 2, pp. 91-112, 2016. DOI: https://doi.org/10.1039/C5MH00260E
N. Amdouni, F. Gendron, A. Mauger, H. Zarrouk, and C. M. Julien, "LiMn2−yCoyO4 (0≤y≤1) intercalation compounds synthesized from wet-chemical route," Materials Science and Engineering: B, vol. 129, no. 1-3, pp. 64-75, 2006. DOI: https://doi.org/10.1016/j.mseb.2005.12.031
A. S. Rahim, N. Aziz, N. A. M. Nor, and Z. Osman, "LiNi0.5Mn1.5O4 cathode material prepared by sol–gel method," Molecular Crystals and Liquid Crystals, vol. 695, no. 1, pp. 10-18, 2020. DOI: https://doi.org/10.1080/15421406.2020.1723901
J. L. Wang, Z. H. Li, J. Yang, J. J. Tang, J. J. Yu, W. B. Nie, G. T. Lei, and Q. Z. Xiao, "Effect of Al-doping on the electro-chemical properties of a three-dimensionally porous lithium manganese oxide for lithium-ion batteries," Electrochimica Acta, vol. 75, pp. 115-122, 2012. DOI: https://doi.org/10.1016/j.electacta.2012.04.136
Y.-S. Lee, N. Kumada, and M. Yoshio, "Synthesis and characterization of lithium aluminum-doped spinel (LiAlxMn2−xO4) for lithium secondary battery," Journal of Power Sources, vol. 96, no. 2, pp. 376-384, 2001. DOI: https://doi.org/10.1016/S0378-7753(00)00652-2
H. Shigemura, M. Tabuchi, H. Kobayashi, H. Sakaebe, A., Hirano, and Kageyama, H., "Structural and electrochemical properties of Li(Fe,Co)xMn2−xO4 solid solution as 5 V positive electrode materials for Li secondary batteries," Journal of Materials Chemistry, vol. 12, no. 6, pp. 1882-1891, 2002. DOI: https://doi.org/10.1039/b200690c
T. Li, K. Chang, A. M. Hashem, A. E. Abdel-Ghany, R. S. El-Tawil, H. Wang, H. El-Mounayri, A. Tovar, L. Zhu, and C. M. Julien, "Structural and electrochemical properties of the high Ni content spinel LiNiMnO4," Electrochem, vol. 2, no. 1, pp. 95-117, 2021. DOI: https://doi.org/10.3390/electrochem2010009
Z.-M. Yu, and L.-C., Zhao, "Structure and electrochemical properties of LiMn2O4," Transactions of Nonferrous Metals Society of China, vol. 17, no. 3, pp. 659-664, 2007. DOI: https://doi.org/10.1016/S1003-6326(07)60152-6
G. Y. Liu, J. M. Guo, Y. N. Li, and B. S. Wang, "Effect of single or double calcination on LiMn2O4 prepared by a solution combustion synthesis," Advanced Materials Research, vol. 216, pp. 134-137, 2011. DOI: https://doi.org/10.4028/www.scientific.net/AMR.216.134
C. Peng, H. Bai, M. Xiang, C. Su, G. Liu, and J. Guo, "Effect of calcination temperature on the electrochemical properties of spinel LiMn2O4 prepared by solid-state combustion synthesis," International Journal of Electrochemical Science, vol. 9, no. 4, pp. 1791-1798, 2014. DOI: https://doi.org/10.1016/S1452-3981(23)07892-6
E. Bulut, A. Örnek, and M. Özacar, "Effect of calcination temperature on synthesis of LiMn2O4 cathode active nanoparticles for rechargeable Li-ion batteries," Advanced Science, Engineering and Medicine, vol. 3, no. 1, pp. 67-71, 2011. DOI: https://doi.org/10.1166/asem.2011.1072
S. H. Ju, and D.-W. Kim, "Effect of calcination temperature on the structure and electrochemical performance of LiMn1.5Ni0.5O4 cathode materials," Bulletin of the Korean Chemical Society, vol. 34, no. 1, pp. 59-62, 2013. DOI: https://doi.org/10.5012/bkcs.2013.34.1.59
B.-Y. Lee, C.-T. Chu, M. Krajewski, M. Michalska, and J.-Y. Lin, "Temperature-controlled synthesis of spinel lithium nickel manganese oxide cathode materials for lithium-ion batteries," Ceramics International, vol. 46, no. 13, pp. 20856-20864, 2020. DOI: https://doi.org/10.1016/j.ceramint.2020.05.124
J. Zheng, P. Yan, L. Estevez, C. Wang, and J.-G. Zhang, "Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries," Nano Energy, vol. 49, pp. 538-548, 2018. DOI: https://doi.org/10.1016/j.nanoen.2018.04.077
B. Cao, W. Chen, and H. Fang, "Facile synthesis of spinel LiMn2O4 cathode material from nanoscale Mn3O4 for lithium-ion batteries," International Journal of Electrochemical Science, vol. 20, no. 8, 2025. DOI: https://doi.org/10.1016/j.ijoes.2025.101071
A. Balakrishnan, P. Pizette, C. L. Martin, S. V. Joshi, and B. P. Saha, "Effect of particle size in aggregated and agglomerated ceramic powders," Acta Materialia, vol. 58, no. 3, pp. 802-812, 2010. DOI: https://doi.org/10.1016/j.actamat.2009.09.058
I. Taniguchi, N. Fukuda, and M. Konarova, "Synthesis of spherical LiMn2O4 microparticles by a combination of spray pyrolysis and drying method," Powder Technology, vol. 181, no. 3, pp. 228-236, 2008. DOI: https://doi.org/10.1016/j.powtec.2007.05.011
J. Zhang, J. Qiao, K. Sun, and Z. Wang, "Balancing particle properties for practical lithium-ion batteries," Particuology, vol. 61, pp. 18-29, 2022. DOI: https://doi.org/10.1016/j.partic.2021.05.006
A. Hoffmann, E. A. Heider, C. Dreer, C. Pfeifer, and M. Wohlfahrt-Mehrens, "Influence of the mixing and dispersing process on the slurry properties and the microstructure and performance of ultrathick cathodes for lithium‐ion batteries," Energy Technology, vol. 11, no. 5, 2022. DOI: https://doi.org/10.1002/ente.202200484
K. Konda, S. B. Moodakare, P. L. Kumar, M. Battabyal, J. R. Seth, V. A. Juvekar, and R. Gopalan, "comprehensive effort on electrode slurry preparation for better electrochemical performance of LiFePO4 battery," Journal of Power Sources, vol. 480, 2020. DOI: https://doi.org/10.1016/j.jpowsour.2020.228837
N. Anansuksawat, T. Sangsanit, S. Prempluem, K. Homlamai, W. Tejangkura, and M. Sawangphruk, "How uniform particle size of NMC90 boosts lithium ion mobility for faster charging and discharging in a cylindrical lithium ion battery cell," Chemical Science, vol. 15, no. 6, pp. 2026-2036, 2024. DOI: https://doi.org/10.1039/D3SC05698H
W. Choi, H.-C. Shin, J. M. Kim, J.-Y. Choi, and W.-S. Yoon, "Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries," Journal of Electrochemical Science and Technology, vol. 11, no. 1, pp. 1-13, 2020. DOI: https://doi.org/10.33961/jecst.2019.00528
W. Hu, Y. Peng, Y. Wei, and Y. Yang, "Application of electro-chemical impedance spectroscopy to degradation and aging research of lithium-ion batteries," The Journal of Physical Chemistry C, vol. 127, no. 9, pp. 4465-4495, 2023. DOI: https://doi.org/10.1021/acs.jpcc.3c00033
K. Ariyoshi, Z. Siroma, A. Mineshige, M. Takeno, T. Fukutsuka, T. Abe, and S. Uchida, "Electrochemical impedance spectroscopy part 1: Fundamentals," Electrochemistry, vol. 90, no. 10, pp. 102007-102007, 2022. DOI: https://doi.org/10.5796/electrochemistry.22-66071
O. Nyamaa, G. H. Kang, S. C. Huh, J. H. Yang, T. H. Nam, and J. P. Noh, "Unraveling the mechanism and practical implications of the sol-gel synthesis of spinel LiMn2O4 as a cathode material for Li-Ion batteries: Critical effects of cation distribution at the matrix level," Molecules, vol. 28, no. 8, 2023. DOI: https://doi.org/10.3390/molecules28083489
C. Bischoff, O. Fitz, C. Schiller, H. Gentischer, D. Biro, and H.-M. Henning, "Investigating the impact of particle size on
the performance and internal resistance of aqueous zinc ion batteries with a manganese sesquioxide cathode," Batteries, vol. 4, no. 3, 2018. DOI: https://doi.org/10.3390/batteries4030044
P. Cofré, A. Quispe, and M. Grágeda, "Effect of particle-size distribution on LiFePO4 cathode electrochemical performance in Li-ion cells," Revista Mexicana de Ingeniería Química, vol. 21, no. 2, pp. 1-12, 2022. DOI: https://doi.org/10.24275/rmiq/Mat2493
W. Liang, P. Wang, H. Ding, B. Wang, and S. Li, "Granularity control enables high stability and elevated-temperature properties of micron-sized single-crystal LiNi0.5Mn1.5O4 cathodes at high voltage," Journal of Materiomics, vol. 7, no. 5, pp. 1049-1060, 2021. DOI: https://doi.org/10.1016/j.jmat.2021.02.003
 
											Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Journal of Metals, Materials and Minerals

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
 
						 
			
		 
			 
			 
				




