Effect of lanthanum doping on phase transition, piezoelectric and energy storage properties of lead-free 0.93(Bi\(_{0.5}\)Na\(_{0.5}\))TiO\(_{3}\)‒0.07BaTiO\(_{3}\) ceramics
DOI:
https://doi.org/10.55713/jmmm.v35i4.2358คำสำคัญ:
BNBT Lead-free piezoceramics, A-site La doping, Energy storage properties, Piezoelectric propertiesบทคัดย่อ
In this study, lead-free (Bi0.465Na0.465Ba0.07)(1–x)LaxTiO3 (x=0.0‒0.04) ceramics were synthesized using a conventional solid-state reaction method. All samples showed a single-phase perovskite structure with pseudocubic symmetry. The dense microstructure revealed a decrease in average grain size as x increased. La3+ addition stabilized polar nanoregions (PNRs), shifting the ferroelectric to relaxor phase transition temperature (TF₋R=104℃ for x=0.0) to below room temperatures as La3+ content increased. This resulted in a transition from a rectangular to a relaxor-like thin P–E loop (x≥0.01), indicating a shift from ferro-electric (FE) to relaxor ferroelectric (RFE), which led to enhanced recoverable energy storage density (Wrec=0.55 J∙cm‒3 for x=0.01 and 0.02) and efficiency (η=75%) at x=0.03 under a 60 kV∙cm‒1 field. Additionally, the composition at x=0.01 achieved a maximum strain (Smax) of 0.21% with a high normalized strain of 350 pm∙V‒1 under 60 kV∙cm‒1 at ambient temperature. These changes in the physical and electrical properties of the A-site doped BNT-based system are attributed to alterations in domain structure and defect chemistry.
Downloads
เอกสารอ้างอิง
L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, and S. Zhang, "Perovskite lead-free dielectrics for energy storage applications," Progress in Materials Science, vol. 102, pp. 72-108, 2019. DOI: https://doi.org/10.1016/j.pmatsci.2018.12.005
D. Damjanovic, and R. Newnham, "Electrostrictive and piezo-electric materials for actuator applications," Journal of Intelligent Material Systems and Structures, vol. 3, pp. 190-208, 1992. DOI: https://doi.org/10.1177/1045389X9200300201
J. Lee, S. Hajra, S. Panda, W. Oh, Y. Oh, H. Shin, Y. K. Mishra, and H. J. Kim, "Accelerate the shift to green energy with PVDF based piezoelectric nanogenerator," International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 11, pp. 233-241, 2024. DOI: https://doi.org/10.1007/s40684-023-00539-y
R. Guo, L. Cross, S. Park, B. Noheda, D. Cox, and G. Shirane, "Origin of the high piezoelectric response in PbZr1−xTixO3," Physical Review Letters, vol. 84, p. 5423, 2000. DOI: https://doi.org/10.1103/PhysRevLett.84.5423
H. T. Dang, T. T. Trinh, C. T. Nguyen, T. V. Do, M. D. Nguyen, and H. N. Vu, "Enhancement of relaxor behavior by La doping and its influence on the energy storage performance and electric breakdown strength of ferroelectric Pb(Zr0.52Ti0.48)O3 thin films," Materials Chemistry and Physics, vol. 234, pp. 210-216, 2019. DOI: https://doi.org/10.1016/j.matchemphys.2019.06.005
K. J. Puttlitz, and G. T. Galyon, "Impact of the ROHS directive on high-performance electronic systems, in: Lead-free electronic solders," Springer, 2006, pp. 347-365. DOI: https://doi.org/10.1007/978-0-387-48433-4_23
G. A. Smolenskii, V. A. Isupo, A I. Agranovskaya, and N. N. Krainik, "New ferroelectrics of. complex composition," Soviet physics. Solid state, vol. 2, pp. 2651-2654, 1961'.
T. Takenaka, K. M. K. Maruyama, and K. S. K. Sakata, "(Bi1/2 Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics," Japanese Journal of Applied Physics, vol. 30, p. 2236, 1991.
M. Benyoussef, M. Zannen, J. Belhadi, B. Manoun, J.-L. Dellis, M. El Marssi, and A. Lahmar, "Dielectric, ferroelectric, and energy storage properties in dysprosium doped sodium bismuth titanate ceramics," Ceramics International, vol. 44, pp. 19451-19460, 2018. DOI: https://doi.org/10.1016/j.ceramint.2018.07.182
Y. Hiruma, H. Nagata, T. Takenaka, Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics, Journal of Applied Physics, vol. 105, 2009. DOI: https://doi.org/10.1063/1.3115409
Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-free piezoceramics," Nature, vol. 432, pp. 84-87, 2004. DOI: https://doi.org/10.1038/nature03028
A. Prado, L. Ramajo, J. Camargo, A. del Campo, P. Öchsner, F. Rubio-Marcos, and M. Castro, "Stabilization of the morphotropic phase boundary in (1−x)Bi0.5Na0.5TiO3–xBaTiO3 ceramics through two alternative synthesis pathways," Journal of Materials Science: Materials in Electronics, vol. 30, pp. 18405-18412, 2019.
L. Zheng, X. Yi, S. Zhang, W. Jiang, B. Yang, R. Zhang, and W. Cao, "Complete set of material constants of 0.95(Na0.5Bi0.5) TiO3-0.05BaTiO3 lead-free piezoelectric single crystal and the delineation of extrinsic contributions," Applied Physics Letters, vol.103, 2013. DOI: https://doi.org/10.1063/1.4821853
F. Gao, X. Dong, C. Mao, W. Liu, H. Zhang, L. Yang, F. Cao, and G. Wang, "Energy‐storage properties of 0.89Bi0.5Na0.5TiO3– 0.06BaTiO3–0.05K0.5Na0.5NbO3 lead‐free anti‐ferroelectric ceramics," Journal of the American Ceramic Society, vol. 94, pp. 4382-4386, 2011. DOI: https://doi.org/10.1111/j.1551-2916.2011.04731.x
W. Jo, T. Granzow, E. Aulbach, J. Rödel, and D. Damjanovic, "Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics," Journal of Applied Physics, vol. 105, p. 094102, 2009. DOI: https://doi.org/10.1063/1.3121203
F. Li, Y. Liu, Y. Lyu, Y. Qi, Z. Yu, and C. Lu, "Huge strain and energy storage density of A-site La3+ donor doped (Bi0.5Na0.5) 0.94Ba0.06TiO3 ceramics," Ceramics International, vol. 43, pp. 106-110, 2017. DOI: https://doi.org/10.1016/j.ceramint.2016.09.117
X. Liu, H. Guo, and X. Tan, "Evolution of structure and electrical properties with lanthanum content in [(Bi1/2Na1/2)0.95Ba0.05]1−x LaxTiO3 ceramics," Journal of the European Ceramic Society, vol. 34, pp. 2997-3006, 2014. DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.03.017
A. Prado-Espinosa, J. Camargo, A. del Campo, F. Rubio-Marcos, M. Castro, and L. Ramajo, "Exploring new methodologies for the identification of the morphotropic phase boundary region in the (BiNa)TiO3-BaTiO3 lead free piezoceramics: Confocal Raman Microscopy," Journal of Alloys and Compounds, vol. 739, pp. 799805, 2018. DOI: https://doi.org/10.1016/j.jallcom.2017.12.308
A. Prado, L. Ramajo, J. Camargo, A. del Campo, P. Öchsner, F. Rubio-Marcos, and M. Castro, "Stabilization of the morphotropic phase boundary in (1−x)Bi0.5Na0.5TiO3–xBaTiO3 ceramics through two alternative synthesis pathways," Journal of Materials Science: Materials in Electronics, vol. 30 , pp. 18405-18412, 2019. DOI: https://doi.org/10.1007/s10854-019-02194-z
B. Jaffe, W. R. Cook Jr. and H. Jaffe, “Piezoelectric Ceramics,” Academic Press, London and New York, 1971. DOI: https://doi.org/10.1016/B978-0-12-379550-2.50016-8
L. Li, M. Xu, Q. Zhang, P. Chen, N. Wang, D. Xiong, B. Peng, and L. Liu, "Electrocaloric effect in La-doped BNT-6BT relaxor ferroelectric ceramics," Ceramics International, vol. 44, pp. 343-350, 2018. DOI: https://doi.org/10.1016/j.ceramint.2017.09.179
L. Pauling, "The nature of the chemical bond and the structure of molecules and crystals: An introduction to modern structural chemistry," Cornell university press, 3rd edition by Pauling, Linus, 1960.
C. Zhou, Q. Li, J. Xu, L. Yang, W. Zeng, C. Yuan, and G. Chen, "Ferroelectric‐quasiferroelectric‐ergodic relaxor transition and multifunctional electrical properties in Bi0.5Na0.5TiO3‐based ceramics," Journal of the American Ceramic Society, vol. 101, pp. 1554-1565, 2018. DOI: https://doi.org/10.1111/jace.15308
R. A. Malik, A. Hussain, A. Maqbool, A. Zaman, T. K. Song, W.-J. Kim, andM.-H. Kim, "Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics," Journal of Alloys and Compounds, vol. 682, pp. 302-310, 2016. DOI: https://doi.org/10.1016/j.jallcom.2016.04.297
R. Machado, V. B. dos Santos, D. A. Ochoa, E. Cerdeiras, L. Mestres, and J. E. García, "Elastic, dielectric and electro-mechanical properties of (Bi0.5Na0.5)TiO3-BaTiO3 piezoceramics at the morphotropic phase boundary region," Journal of Alloys and Compounds, vol. 690, pp. 568-574, 2017. DOI: https://doi.org/10.1016/j.jallcom.2016.08.116
X. Qiao, F. Zhang, D. Wu, B. Chen, X. Zhao, Z. Peng, X. Ren, P. Liang, X. Chao, and Z. Yang, "Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics," Chemical Engineering Journal, vol. 388, p. 2020 124158, 2020. DOI: https://doi.org/10.1016/j.cej.2020.124158
P. Fu, Z. Xu, R. Chu, W. Li, G. Zang, and J. Hao, "Piezo- electric, ferroelectric and dielectric properties of La2O3-doped (Bi0.5 Na0.5)0.94Ba0.06TiO3 lead-free ceramics," Materials & Design, vol. 31, pp. 796-801, 2010. DOI: https://doi.org/10.1016/j.matdes.2009.07.056
A. Ullah, Z. Yao, H. Liu, H. Hao, A. Manan, A. Ullah, A. Jan, M. Cao, S. Ahmad, and F. Alresheedi, "Improved energy storage properties of La0.33NbO3 modified 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramic system," Applied Physics A, vol. 127, pp. 1-12, 2021. DOI: https://doi.org/10.1007/s00339-021-04312-3
W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, and J. Rödel, "On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3," Journal of Applied Physics, vol. 110, p. 074106, 2011. DOI: https://doi.org/10.1063/1.3645054
B. Ji, Q. Li, S. Zheng, Q. Li, W. Wang, and H. Fan, "Giant strain and excellent anti-fatigue properties of La3+ doped (Na0.84K0.16)0.5Bi0.5Ti0.985Ta0.015O3 lead-free ceramics," Materials Science and Engineering: B, vol. 305, p. 117439, 2024. DOI: https://doi.org/10.1016/j.mseb.2024.117439
P. Fu, Z. Xu, R. Chu, W. Li, G. Zang, and J. Hao, "Piezoelectric, ferroelectric and dielectric properties of Nd2O3-doped (Bi0.5Na0.5) 0.94Ba0.06TiO3 lead-free ceramics," Materials Science and Engineering: B, vol. 167, pp. 161-166, 2010. DOI: https://doi.org/10.1016/j.mseb.2010.01.057
R. K. Sahu, K. Banerjee, and S. Asthana, "Ergodic-nonergodic relaxor behavior, recoverable energy storage density, and dynamic hysteresis scaling in NKBT ferroelectrics," Journal of Materials Science: Materials in Electronics, vol. 34, p. 972, 2023. DOI: https://doi.org/10.1007/s10854-023-10430-w
A. Ullah, C. W. Ahn, A. Ullah, and I. W. Kim, "Large strain under a low electric field in lead-free bismuth-based piezo-electrics," Applied Physics Letters, vol. 103, p. 022906, 2013. DOI: https://doi.org/10.1063/1.4813420
N. Zhao, H. Fan, L. Ning, J. Ma, and Y. Zhou, "Temperature‐stable dielectric and energy storage properties of La(Ti0.5Mg0.5) O3‐doped (Bi0.5Na0.5)TiO3‐(Sr0.7Bi0.2)TiO3 lead‐free ceramics," Journal of the American Ceramic Society, vol. 101, pp. 5578-5585, 2018. DOI: https://doi.org/10.1111/jace.15870
X. Zhang, Y. Xiao, B. Du, Y. Li, Y. Wu, L. Sheng, and W. Tan, "Improved non-piezoelectric electric properties based on a modulated ferroelectric-ergodic relaxor transition in (Bi0.5 Na0.5) TiO3-Ba(Ti, Zr)O3 ceramics," Materials, vol. 14, p. 6666, 2021. DOI: https://doi.org/10.3390/ma14216666
Q. Li, W. Zhang, C. Wang, L. Ning, Y. Wen, B. Hu, and H. Fan, "Enhanced energy-storage performance of (1-x)(0.72Bi0.5Na0.5TiO3- 0.28Bi0.2Sr0.7□0.1TiO3)-xLa ceramics," Journal of Alloys and Compounds, vol. 775, pp. 116-123, 2019. DOI: https://doi.org/10.1016/j.jallcom.2018.10.092
S. Pang, L. Yang, J. Qin, H. Qin, H. Xie, H. Wang, C. Zhou, and J. Xu, "Low electric field-induced strain and large improvement in energy density of (Lu0.5Nb0.5)4+ complex-ions doped BNT–BT ceramics," Applied Physics A, vol. 125, pp. 1-12, 2019. DOI: https://doi.org/10.1007/s00339-019-2410-6
X. Liu, J. Zhai, B. Shen, F. Li, Y. Zhang, P. Li, and B. Liu, "Electric-field-temperature phase diagram and electromechanical properties in lead-free (Na0.5Bi0.5)TiO3-based incipient piezoelectric ceramics," Journal of the European Ceramic Society, vol. 37, pp. 1437-1447, 2017. DOI: https://doi.org/10.1016/j.jeurceramsoc.2016.12.020
R. A. Malik, A. Hussain, A. Zaman, A. Maqbool, J. U. Rahman, T. K. Song, W.-J. Kim, and M.-H. Kim, "Structure–property relationship in lead-free A-and B-site co-doped Bi0.5(Na0.84K0.16)0.5 TiO3–SrTiO3 incipient piezoceramics," RSC Advances, vol. 5, pp. 96953-96964, 2015. DOI: https://doi.org/10.1039/C5RA19107F

ดาวน์โหลด
เผยแพร่แล้ว
วิธีการอ้างอิง
ฉบับ
บท
Categories
การอนุญาต
ลิขสิทธิ์ (c) 2025 วารสารโลหะ, วัสดุ และแร่

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.