A review on recent progress in supported magnetic nanoparticles: From synthetic methods to applications

ผู้แต่ง

  • Khushboo DHIMAN Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
  • Ayashkanta NANDA Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
  • Navneet KAUR Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
  • Manvinder KAUR Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India ;Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India; Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura-140401, Punjab, India;
  • Harvinder Singh SOHAL Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
  • Himanshi SHARMA Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
  • Meenakshi VERMA Department of Applied Science, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali-140307, Punjab, India

DOI:

https://doi.org/10.55713/jmmm.v35i4.2437

คำสำคัญ:

Supported magnetic nanoparticles, Silica, Cellulose, Drug delivery system, Hyperthermia

บทคัดย่อ

Magnetic nanoparticles supported on various materials have recently gained significant attention due to their wide range of applications across multiple fields such as catalysis, biomedicine, environmental remediation, and magnetic separation. The support materials are essential for stabilizing magnetic nano-particles and enhancing their properties, thereby improving their performance and versatility. This review presents a comprehensive summary of recent advancements and key developments in supported magnetic nanoparticles, focusing on various support materials including silica, alumina, cellulose, charcoal, polymeric materials, and carbon nanotubes. We also discussed why we needed a shift from conventional nanoparticles to magnetic nanoparticles and from magnetic nanoparticles to supported magnetic nanoparticles. We discussed various support materials and their synthesis methods, and applications, highlighting their unique features and advantages. Furthermore, we address the prospects in this rapidly advancing field, highlighting the potential for continued research and innovation to uncover new opportunities and tackle emerging societal needs.

Downloads

Download data is not yet available.

เอกสารอ้างอิง

P. Minakshi, M. Ghosh, B. Brar, K. Ranjan, H. S. Patki, and R. Kumar, “Separation techniques with nanomaterials,” in Handbook of Nanomaterials in Analytical Chemistry: Modern Trends in Analysis, pp. 99–158, 2020. DOI: https://doi.org/10.1016/B978-0-12-816699-4.00006-2

N. Sezer, İ. Arı, Y. Biçer, and M. Koç, “Superparamagnetic nanoarchitectures: Multimodal functionalities and applications,” Journal of Magnetism and Magnetic Materials, vol. 538, p. 168300, 2021. DOI: https://doi.org/10.1016/j.jmmm.2021.168300

S. Singamaneni, V. N. Bliznyuk, and C. Binek, “Magnetic nano-particles: Recent advances in synthesis, self-assembly and applications,” Journal of Materials Chemistry, vol. 21, no. 42, pp. 16819–16845, 2011. DOI: https://doi.org/10.1039/c1jm11845e

B. Thiesen, and A. Jordan, “Clinical applications of magnetic nanoparticles for hyperthermia,” International Journal of Hyperthermia, vol. 24, no. 6, pp. 467–474, 2008,. DOI: https://doi.org/10.1080/02656730802104757

S. S. Leong, Z. Ahmad, S. C. Low. J. Camacho, J. Faraudo, and J. Lim, “Unified view on magnetic nanoparticle separation under magnetophoresis,” Langmuir, vol. 36, no. 28, pp. 8033‒8055, 2020. DOI: https://doi.org/10.1021/acs.langmuir.0c00839

R. Brüning, L. Rózsa, R. Lo Conte, A. Kubetzka, R. Wiesendanger, and K. von Bergmann, “Topological meron-antimeron domain walls and skyrmions in a low-symmetry system,” Physical Review Journals, vol. 15, no. 2, p. 21041, 2025. DOI: https://doi.org/10.1103/PhysRevX.15.021041

L. V. Dieren, A. A. Ruzette, V. Tereshenko, H. Oubari, Y. Berkane, J. Cornacchini, F. Thiessen, C. L. Cetrulo, K. Uygun, and A. G. Lellouch, “Computational modeling of super-paramagnetic nanoparticle-based (affinity) diagnostics.,” Frontiers in Bioengineering and Biotechnology, vol. 12, no. 1, p. 1500756, 2024. DOI: https://doi.org/10.3389/fbioe.2024.1500756

A. G. Kolhatkar, A. C. Jamison, D. Litvinov, R. C. Willson, and T. R. Lee, “Tuning the magnetic properties of nanoparticles,” International journal of molecular sciences, vol. 14, no. 8, pp. 15977‒16009, 2013. DOI: https://doi.org/10.3390/ijms140815977

K. Parekh, and N. Jain, “Toxicology of Superparamagnetic Materials,” in book Superparamagnetic Materials for Cancer Medicine, 2023, pp. 199–217. DOI: https://doi.org/10.1007/978-3-031-37287-2_10

S. Schuerle, S. Erni, M. Flink, B. E. Kratochvil, and B. Nelson, “Three-dimensional magnetic manipulation of micro-and nano-structures for applications in life sciences,” IEEE Transactions on Magnetics, vol. 49, no. 1, pp. 321–330, 2013. DOI: https://doi.org/10.1109/TMAG.2012.2224693

J. F. Liu , B. Jang, D. Issadore, and A. Tsourkas, “Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting,” WIREs Nanomedicine and Nanobiotechnology, vol. 11, no. 6, p. e1571, 2019. DOI: https://doi.org/10.1002/wnan.1571

J. Huang, X. Zhong, L. Wang, L. Yang, Lily, and H. Mao, “Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles,” Theranostics, vol. 2, no. 1, pp. 86‒102, 2012. DOI: https://doi.org/10.7150/thno.4006

D. Yoo, J.-H. Lee, T.-H. Shin, and J. Cheon, “Theranostic magnetic nanoparticles,” Accounts of Chemical Research, vol. 44, no. 10, pp. 863–874, 2011. DOI: https://doi.org/10.1021/ar200085c

Y.-L. Liu, D. Chen, P. Shang, and D.-C. Yin, “A review of magnet systems for targeted drug delivery,” Journal of Controlled Release, vol. 302, pp. 90‒104, 2019. DOI: https://doi.org/10.1016/j.jconrel.2019.03.031

S. Sun, and H. Zeng, “Size-controlled synthesis of magnetite nanoparticles,” Journal of the American Chemical Society, vol. 124, no. 28, pp. 8204–8205, 2002. DOI: https://doi.org/10.1021/ja026501x

Y. Bao, T. Wen, A. C. S. Samia, A. Khandhar, and K. M. Krishnan, “Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine,” Journal of materials science, vol. 51, no. 1, pp. 513–553, 2015. DOI: https://doi.org/10.1007/s10853-015-9324-2

M. M. Selim, S. El-safty, A. Tounsi, and M. Shenashen, “A review of magnetic nanoparticles used in nanomedicine,” APL Materials, vol. 12, no. 1, pp. 1–14, 2024. DOI: https://doi.org/10.1063/5.0191034

G. F. Stiufiuc, and R. Stiufiuc, “Magnetic nanoparticles: synthesis, characterization, and their use in biomedical field,” Applied Sciences, vol. 14, no. 4, p. 1623, 2024. DOI: https://doi.org/10.3390/app14041623

V. F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, and S. Lanceros-Mendez, “Advances in magnetic nanoparticles for biomedical applications,” Advanced Healthcare Materials, vol. 7, no. 5, p. 1700845, 2017. DOI: https://doi.org/10.1002/adhm.201700845

D. Wang, and D. Astruc, “Fast-growing field of magnetically recyclable nanocatalysts,” Chemical Reviews, vol. 114, no. 14, pp. 6949‒6985, 2014. DOI: https://doi.org/10.1021/cr500134h

A. D. Eren A, “Model-based design of pharmaceutical crystallization processes,” Ph.D. dissertation, Department of Chemical Engineering, Purdue University, West Lafayette, Indiana, United States 2021.

L. Guerrini, R. A. Alvarez-Puebla, and N. Pazos-Perez, “Surface modifications of nanoparticles for stability in biological fluids,” Materials, vol. 11, no. 7, p. 1154, 2018. DOI: https://doi.org/10.3390/ma11071154

S. Wan, J. Peng, L. Jiang, and Q. Cheng, “Bioinspired graphene-based nanocomposites and their application in flexible energy devices,” Advanced Materials, vol. 28, no. 36, pp. 7862‒7898, 2016. DOI: https://doi.org/10.1002/adma.201601934

P. M. Martins, A. C. Lima, S. Ribeiro, S. Lanceros-Mendez, and P. Martins, “Magnetic nanoparticles for biomedical applications: From the soul of the earth to the deep history of ourselves,” ACS Applied Bio Materials, vol. 4, no. 8, pp. 5839-5870, 2021. DOI: https://doi.org/10.1021/acsabm.1c00440

R. A. Sheldon, I. W. C. E. Arends, and U. Hanefeld, Green chemistry and catalysis, Wiley-VCH Verlag GmbH; 1st edition, Wiley-VCH, 2007, pp. 1‒448 DOI: https://doi.org/10.1002/9783527611003

X. Mao, J. Xu, and H. Cui, “Functional nanoparticles for magnetic resonance imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol. 8, no. 6, pp. 814-841, 2016. DOI: https://doi.org/10.1002/wnan.1400

M. A. M. Gijs, F. Lacharme, and U. Lehmann, “Microfluidic applications of magnetic particles for biological analysis and catalysis,” Chemical Reviews, vol. 110, no. 3, pp. 1518–1563, 2010. DOI: https://doi.org/10.1021/cr9001929

P. Mondal, A. Anweshan, and M. K. Purkait, “Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review,” Chemosphere, vol. 259, p. 127509, 2020. DOI: https://doi.org/10.1016/j.chemosphere.2020.127509

M. D. Nguyen, H.-V. Tran, S. Xu, and T. R. Lee, “Fe3O4 nano-particles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications,” Applied Sciences, vol. 11, no. 23, pp. 1–22, 2021. DOI: https://doi.org/10.3390/app112311301

K. T. Turcheniuk, A. V. Tarasevych, V. P. Kukhar, R. Boukherroub, and S. Szunerits, “Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles,” Nanoscale, vol. 5, no. 22, pp. 10729‒10752, 2013. DOI: https://doi.org/10.1039/c3nr04131j

Y.-W. Lee, H. Ceylan, I. C. Yasa, U. Kilic, and M. Sitti, “3D-printed multi-stimuli-responsive mobile micromachines,” ACS Applied Materials & Interfaces, vol. 13, no. 11, pp. 12759-12766, 2021. DOI: https://doi.org/10.1021/acsami.0c18221

S. Shrestha, B. Wang, and P. Dutta, “Nanoparticle processing: Understanding and controlling aggregation,” Advances in Colloid and Interface Science, vol. 279, p. 102162, 2020. DOI: https://doi.org/10.1016/j.cis.2020.102162

J. Kudr, Y. Haddad, L. Richtera, Z. Heger, M. Cernak, V. Adam, and O. Zitka, “Magnetic nanoparticles: From design and synthesis to real world applications,” Nanamaterials, vol. 7, no. 9, p. 243, 2017. DOI: https://doi.org/10.3390/nano7090243

A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: Synthesis, protection, functionalization, and application,” Angewandte Chemie International Edition, vol. 46, no. 8, pp. 1222-1244, 2007. DOI: https://doi.org/10.1002/anie.200602866

D. D. V. Stueber , J. Villanova, I. Aponte, Z. Xiao, and V. L. Colvin, “Magnetic nanoparticles in biology and medicine: Past, present, and future trends,” Pharmaceutics, vol. 13, no. 7, p. 943, 2021. DOI: https://doi.org/10.3390/pharmaceutics13070943

J. G. Croissant, Y. Fatieiev, A. Almalik, and N. M. Khashab, “Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications,” Advanced Healthcare Materials, vol. 7, no. 4, p. 1700831, 2017. DOI: https://doi.org/10.1002/adhm.201700831

R. A. Bohara, N. D. Thorat, and S. H. Pawar, “Role of functionalization: Strategies to explore potential nano-bio applications of magnetic nanoparticles,” RSC Advances, vol. 6, no. 50, pp. 43989-44012, 2016. DOI: https://doi.org/10.1039/C6RA02129H

Y. Cao, Y. Yuan, Y. Shang, V. I. Zverev, R. R. Gimaev, R. Barua, R. L. Hadimani, L. Mei, G. Guo, and H. Fu, “Phase transition and magnetocaloric effect in particulate Fe-Rh alloys,” Journal of Materials Science, vol. 55, no. 27, pp. 13363–13371, 2020. DOI: https://doi.org/10.1007/s10853-020-04921-y

Y. Lin, K. Zhang, R. Zhang, Z. She, R. Tan, Y. Fan, and X. Li, “Magnetic nanoparticles applied in targeted therapy and magnetic resonance imaging: Crucial preparation parameters, indispensable pre-treatments, updated research advancements and future perspectives,” Journal of Materials Chemistry B, vol. 8, no. 28, pp. 5973‒5991, 2020. DOI: https://doi.org/10.1039/D0TB00552E

J. Trujillo-Reyes, J. R. Peralta-Videa, and J. L. Gardea-Torresdey, “Supported and unsupported nanomaterials for water and soil remediation: Are they a useful solution for worldwide pollution?,” Journal of Hazardous Materials, vol. 280, pp. 487‒503, 2014. DOI: https://doi.org/10.1016/j.jhazmat.2014.08.029

J. Theerthagiri, S. J. Lee, K. Karuppasamy, S. Arulmani, S. Veeralakshmi, M. Ashokkumar, and M. Y. Choi, “Application of advanced materials in sonophotocatalytic processes for the remediation of environmental pollutants,” Journal of Hazardous Materials, vol. 412, p. 125245, 2021. DOI: https://doi.org/10.1016/j.jhazmat.2021.125245

F. Varíola, F. Vetrone, L. Richert, P. Jedrzejowski, J.-H. Yi, S. Zalzal, S. Clair, A. Sarkissian, D. F. Perepichka, J. D. Wuest, F. Rosei, and A. Nanci, “Improving biocompatibility of implantable metals by nanoscale modification of surfaces: An overview of strategies, fabrication methods, and challenges,” Small, vol. 5, no. 9, pp. 996‒1006, 2009. DOI: https://doi.org/10.1002/smll.200801186

R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam, “Combinatorial and high-throughput screening of materials libraries: Review of state of the art,” ACS Combinatorial Science, vol. 13, no. 6, pp. 579-633, 2011. DOI: https://doi.org/10.1021/co200007w

J. R. Vargas-Ortiz, C. Gonzalez, and K. Esquivel, “Magnetic iron nanoparticles: Synthesis, surface enhancements, and biological challenges,” Processes, vol. 10, no. 11, pp. 2282–2320, 2022. DOI: https://doi.org/10.3390/pr10112282

C. Nwabunwanne, S. O. Aisida, R. Javed, K. G. Akpomie, C. Awada, A. Alshoaibi, and F. Ezema, “Magnetic nanoparticles: Biosynthesis, characterization, surface functionalization and biomedical applications,” Journal of the Indian Chemical Society, vol. 102, no. 3, p. 101617, 2025. DOI: https://doi.org/10.1016/j.jics.2025.101617

J. Wallyn, N. Anton, and T. F. Vandamme, “Synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applications—A review,” Pharmaceutics, vol. 11, no. 11, pp. 1–29, 2019. DOI: https://doi.org/10.3390/pharmaceutics11110601

K. Zhu, Y. Ju, J. Xu, Z. Yang, S. Gao, and Y. Hou, “Magnetic nanomaterials: Chemical design, synthesis, and potential applications,” Accounts of Chemical Research, vol. 51, no. 2, pp. 404–413, 2018. DOI: https://doi.org/10.1021/acs.accounts.7b00407

F. Mahtab, Y. Yu, J. W. Y. Lam, J. Liu, B. Zhang, P. Lu, X. Zhang, and B. Z. Tang, “Fabrication of silica nanoparticles with both efficient fluorescence and strong magnetization, and exploration of their biological applications,” Advanced Functional Materials, vol. 21, no. 9, pp. 1733–1740, 2011. DOI: https://doi.org/10.1002/adfm.201002572

R. K. Kankala, H. Zhang, C.-G. Liu, K. R. Kanubaddi, C.-H. Lee, S.-B. Wang, W. Cui, H. A. Santos, K. Lin, and A.-Z. Chen, “Metal species–encapsulated mesoporous silica nanoparticles: current advancements and latest breakthroughs,” Advanced Functional Materials, vol. 29, no. 43, p. 1902652, 2019. DOI: https://doi.org/10.1002/adfm.201902652

D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” Journal of the American Chemical Society vol. 127, no. 14, pp. 4990–4991, 2005. DOI: https://doi.org/10.1021/ja0428863

N. Joudeh, and D. Linke, “Nanoparticle classification, physico-chemical properties, characterization, and applications: A comprehensive review for biologists,” Journal of Nanobio-technology, vol. 20, no. 1, pp. 1–29, 2022. DOI: https://doi.org/10.1186/s12951-022-01477-8

A. Rimola, D. Costa, M. Sodupe, J.-F. Lambert, and P. Ugliengo, “Silica surface features and their role in the adsorption of biomolecules: Computational modeling and experiments,” Chemical Reviews, vol. 113, no. 6, pp. 4216‒4313, 2013. DOI: https://doi.org/10.1021/cr3003054

S. Wang, Z. Zhang, B. Liu, and J. Li, “Silica coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: a novel environment-friendly catalyst for the synthesis of 5-ethoxy-methylfurfural from 5-hydroxymethylfurfural and fructose,” Catalysis Science & Technology, vol. 3, no. 8, pp. 2104–2112, 2013. DOI: https://doi.org/10.1039/c3cy00223c

D. V. Quy, N. M. Hieu, P. T. Tra, N. H. Nam, N. H. Hai, N. T. Son, P. T. Nghia, N. T. V. Anh, T. T. Hong, and N. H. Luong, “Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses,” Journal of Nanomaterials, vol. 2013, no. 1, pp. 1–7, 2013. DOI: https://doi.org/10.1155/2013/603940

G. Aygar, M. Kaya, N. Özkan, S. Kocabiyik, and M. Volkan, “Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins,” Journal of Physics and Chemistry of Solids, vol. 87, pp. 64–71, 2015. DOI: https://doi.org/10.1016/j.jpcs.2015.08.005

N. Mahmed, O. Heczko, A. Lancok, and S.-P. Hannula, “The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe2+) in ambient atmosphere,” Journal of Magnetism and Magnetic Materials, vol. 353, pp. 15–22, 2014. DOI: https://doi.org/10.1016/j.jmmm.2013.10.012

N. Pal, J. H. Lee, and E. B. Cho, “Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles,” Nanomaterials, vol. 10, no. 11, p. 2122, 2020. DOI: https://doi.org/10.3390/nano10112122

E. Ranjbakhsh, A. K. Bordbar, M. Abbasi, A. R. Khosropour, and E. Shams, “Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles,” Chemical Engineering Journal, vol. 179, pp. 272–276, 2012. DOI: https://doi.org/10.1016/j.cej.2011.10.097

Y.-H. Deng, C.-C. Wang, J.-H. Hu, W.-L. Yang, and S.-K. Fu, “Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 262, no. 1–3, pp. 87–93, 2005. DOI: https://doi.org/10.1016/j.colsurfa.2005.04.009

C. Jin, Y. Wang, H. Wei, H. Tang, X. Liu, T. Lu, and J. Wang, “Magnetic iron oxide nanoparticles coated by hierarchically structured silica: A highly stable nanocomposite system and ideal catalyst support,” Journal of Materials Chemistry A, vol. 2, no. 29, pp. 11202–11208, 2014. DOI: https://doi.org/10.1039/c4ta00258j

F. Venditti, R. Angelico, G. Palazzo, G. Colafemmina, A. Ceglie, and F. Lopez, “Preparation of nanosize silica in reverse micelles: Ethanol produced during TEOS hydrolysis affects the micro-emulsion structure,” Langmuir, vol. 23, no. 20, pp. 10063–10068, 2007. DOI: https://doi.org/10.1021/la701739w

M. Zhang, B. L. Cushing, and C. J. O’Connor, “Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles,” Nanotechnology, vol. 19, no. 8, p. 85601, 2008. DOI: https://doi.org/10.1088/0957-4484/19/8/085601

I. Rhee, T. Ahmad, S. Hong, Y. Chang, and J. Lee, “Silica-coated iron-oxide nanoparticles synthesized as a T2 contrast agent for magnetic resonance imaging by using the reverse micelle method,” Journal- Korean Physical Society, vol. 57, no. 6, pp. 1545–1549, 2010. DOI: https://doi.org/10.3938/jkps.57.1545

T. M. Eggenhuisen, M. J. Van Steenbergen, H. Talsma, P. E. de Jongh, and K. P. de Jong, “Impregnation of mesoporous silica for catalyst preparation studied with differential scanning calorimetry,” The Journal of Physical Chemistry C, vol. 113, no. 38, pp. 16785–16791, 2009. DOI: https://doi.org/10.1021/jp905410d

V. Mévellec, A. Nowicki, A. Roucoux, C. Dujardin, P. Granger, E. Payen, and K. Philippot, “A simple and reproducible method for the synthesis of silica-supported rhodium nanoparticles and their investigation in the hydrogenation of aromatic compounds,” New Journal of Chemistry, vol. 30, no. 8, pp. 1214–1219, 2006. DOI: https://doi.org/10.1039/B605893K

K. Chaiseeda, S. Nishimura, and K. Ebitani, “Gold nanoparticles supported on alumina as a catalyst for surface plasmon-enhanced selective reductions of nitrobenzene,” ACS Omega, vol. 2, no. 10, pp. 7066–7070, 2017. DOI: https://doi.org/10.1021/acsomega.7b01248

P. Riani, G. Garbarino, M. A. Lucchini, F. Canepa, G. Busca, “Unsupported versus alumina-supported Ni nanoparticles as catalysts for steam/ethanol conversion and CO2 methanation,” Journal of Molecular Catalysis A: Chemical, vol. 383–384, pp. 10–16, 2014. DOI: https://doi.org/10.1016/j.molcata.2013.11.006

L. M. Rossi, N. J. S. Costa, F. P. Silva, and R. Wojcieszak, “Magnetic nanomaterials in catalysis: Advanced catalysts for magnetic separation and beyond,” Green Chemistry, vol. 16, no. 6, pp. 2906-2933, 2014. DOI: https://doi.org/10.1039/c4gc00164h

M. B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, and R. S. Varma, “Cu and Cu-based nanoparticles: synthesis and applications in catalysis,” Chemical Reviews, vol. 116, no. 6, pp. 3722–3811, 2016. DOI: https://doi.org/10.1021/acs.chemrev.5b00482

L. Sun, C. Zhang, L. Chen, J. Liu, H. Jin, H. Xu, and L. Ding, “Preparation of alumina-coated magnetite nanoparticle for extraction of trimethoprim from environmental water samples based on mixed hemimicelles solid-phase extraction,” Analytica Chimica Acta, vol. 638, no. 2, pp. 162–168, 2009. DOI: https://doi.org/10.1016/j.aca.2009.02.039

D. Karabelli, S. Ünal, T. Shahwan, and A. E. Eroĝlu, “Preparation and characterization of alumina-supported iron nanoparticles and its application for the removal of aqueous Cu2+ ions,” Chemical Engineering Journal, vol. 168, no. 2, pp. 979–984, 2011. DOI: https://doi.org/10.1016/j.cej.2011.01.015

C. Marichy, M. Bechelany, and N. Pinna, “Atomic layer deposition of nanostructured materials for energy and environmental applications,” Advanced Materials, vol. 24, no. 8, pp. 1017–1032, 2012. DOI: https://doi.org/10.1002/adma.201104129

Z. Yao, Y. Peng, C. Xia, X. Yi, S. Mao, and M. Zhang, “The effect of calcination temperature on microstructure and properties of FeNiMo@Al2O3 soft magnetic composites prepared by sol-gel method,” Journal of Alloys and Compounds, vol. 827, p. 154345, 2020 DOI: https://doi.org/10.1016/j.jallcom.2020.154345

S. Said, S. Mikhail, and M. Riad, “Recent processes for the production of alumina nano-particles,” Materials Science for Energy Technologies, vol. 3, pp. 344–363, 2020. DOI: https://doi.org/10.1016/j.mset.2020.02.001

S. Ghanizadeh, X. Bao, B. Vaidhyanathan, and J. Binner, “Synthesis of nano α-alumina powders using hydrothermal and precipitation routes: A comparative study,” Ceramics International, vol. 40, no. 1 Part B, pp. 1311–1319, 2014. DOI: https://doi.org/10.1016/j.ceramint.2013.07.011

P. Munnik, P. E. de Jongh, and K. P. de Jong, “Recent developments in the synthesis of supported catalysts,” Chemical Reviews, vol. 115, no. 14, pp. 6687‒6718, 2015. DOI: https://doi.org/10.1021/cr500486u

J.-Y. Park, Y.-J. Lee, P. K. Khanna, K.-W. Jun, J. W. Bae, and Y. H. Kim, “Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts: Effect of particle size of iron oxide,” Journal of Molecular Catalysis A: Chemical, vol. 323, no. 1–2, pp. 84–90, 2010. DOI: https://doi.org/10.1016/j.molcata.2010.03.025

X. Wu, Z. Shi, S. Fu, J. Chen, R. M. Berry, and K. C. Tam, “Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts,” ACS Sustainable Chemistry & Engineering, vol. 4, no. 11, pp. 5929–5935, 2016. DOI: https://doi.org/10.1021/acssuschemeng.6b00551

G. Biliuta, and S. Coseri, “Cellulose: A ubiquitous platform for ecofriendly metal nanoparticles preparation,” Coordination Chemistry Reviews, vol. 383, pp. 155‒173, 2019. DOI: https://doi.org/10.1016/j.ccr.2019.01.007

K. B. R. Teodoro, R. C. Sanfelice, F. L. Migliorini, A. Pavinatto, M. H. M. Facure, and D. S. Correa, “A Review on the role and performance of cellulose nanomaterials in sensors,” ACS Sensors, vol. 6, no. 7, pp. 2473‒2496, 2021. DOI: https://doi.org/10.1021/acssensors.1c00473

M. A. C. M. Haniffa, K. Munawar, C. Y. Chee, S. Pramanik, A. Halilu, H. A. Illias, M. Rizwan, R. Senthilnithy, K. R. R. Mahanama, A. Tripathy, and M. F. Azman, “Cellulose supported magnetic nanohybrids: Synthesis, physicomagnetic properties and biomedical applications-A review,” Carbohydrate Polymers, vol. 267, p. 118136, 2021. DOI: https://doi.org/10.1016/j.carbpol.2021.118136

K. Petcharoen, and A. Sirivat, “Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method,” Materials Science and Engineering: B, vol. 177, no. 5, pp. 421–427, 2012. DOI: https://doi.org/10.1016/j.mseb.2012.01.003

Z. Zhao, J. Tian, Y. Sang, A. Cabot, and H. Liu, “Structure, synthesis, and applications of TiO2 nanobelts,” Advanced Materials, vol. 27, no. 16, pp. 2557‒2582, 2015. DOI: https://doi.org/10.1002/adma.201405589

Q. Zhang, J. Li, H. Miao, and J. Fu, “Preparation of γ-Fe2O3 /Ni2O3/FeCl3(FeCl2) composite nanoparticles by hydrothermal process useful for ferrofluids,” Smart Materials Research, vol. 2011, pp. 1–5, 2011. DOI: https://doi.org/10.1155/2011/351072

J. Zhang, X. Feng, J. Wang, G. Fang, J. Liu, and S. Wang, “Nano-crystalline cellulose-coated magnetic nanoparticles for affinity adsorption of glycoproteins,” Analyst, vol. 145, no. 9, pp. 3407–3413, 2020. DOI: https://doi.org/10.1039/D0AN00442A

C. Wan, and J. Li, “Synthesis of well-dispersed magnetic CoFe2O4 nanoparticles in cellulose aerogels via a facile oxidative co-precipitation method,” Carbohydrate Polymers, vol. 134, pp. 144–150, 2015. DOI: https://doi.org/10.1016/j.carbpol.2015.07.083

T. Pasinszki, and M. Krebsz, “Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects,” Nanomaterials, vol. 10, no. 5, p. 917, 2020. DOI: https://doi.org/10.3390/nano10050917

S. Keshipour, and N. K. Khalteh, “Oxidation of ethylbenzene to styrene oxide in the presence of cellulose-supported Pd magnetic nanoparticles,” Applied Organometallic Chemistry, vol. 30, no. 8, pp. 653–656, 2016. DOI: https://doi.org/10.1002/aoc.3485

A. Barhoum, J. Jeevanandam, A. Rastogi, P. Samyn, A. Dufresne, M. K. Danquah, and M. Bechelany, “Plant celluloses, hemi-celluloses, lignins, and volatile oils for the synthesis of nano-particles and nanostructured materials,” Nanoscale, vol. 12, no. 45, pp. 22845‒22890, 2020. DOI: https://doi.org/10.1039/D0NR04795C

H. N. Abdelhamid, and A. P. Mathew, “Cellulose-based nano-materials advance biomedicine: A Review,” International Journal of Molecular Sciences, vol. 23, no. 10, p. 5405, 2022. DOI: https://doi.org/10.3390/ijms23105405

B. Mohan, J. C. Park, and K. H. Park, “Mechanochemical synthesis of active magnetite nanoparticles supported on charcoal for facile synthesis of alkynyl selenides by C−H activation,” ChemCatChem, vol. 8, no. 14, pp. 2345–2350, 2016. DOI: https://doi.org/10.1002/cctc.201600280

M. I. Anik, M. K. Hossain, I. Hossain, A. M. U. B. Mahfuz, M. T. Rahman, and I. Ahmed, “Recent progress of magnetic nano-particles in biomedical applications: A review,” Nano Select, vol. 2, no. 6, pp. 1146–1186, 2021. DOI: https://doi.org/10.1002/nano.202000162

S. Mahdavi, M. Jalali, and A. Afkhami, “Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nano-particles,” Journal of Nanoparticle Research, vol. 14, no. 8, 2012. DOI: https://doi.org/10.1007/s11051-012-0846-0

G. R. Surup, A. Trubetskaya, and M. Tangstad, “Charcoal as an alternative reductant in ferroalloy production: A review,” Processes, vol. 8, no. 11, pp. 1–41, 2020. DOI: https://doi.org/10.3390/pr8111432

K. P. Keboletse, F. Ntuli, and O. P. Oladijo, “Influence of coal properties on coal conversion processes-coal carbonization, carbon fiber production, gasification and liquefaction technologies: A review,” International Journal of Coal Science & Technology, vol. 8, no. 5, pp. 817–843, 2021. DOI: https://doi.org/10.1007/s40789-020-00401-5

A. Singh, J. Dhau, R. Kumar, R. Badru, P. Singh, Y. K. Mishra, and A. Kaushik, “Tailored carbon materials (TCM) for enhancing photocatalytic degradation of polyaromatic hydrocarbons,” Progress in Materials Science, vol. 144, p. 101289, 2024. DOI: https://doi.org/10.1016/j.pmatsci.2024.101289

A. Mahor, P. P. Singh, P. Bharadwaj, N. Sharma, S. Yadav, J. M. Rosenholm, and K. K. Bansal, “Carbon-based nanomaterials for delivery of biologicals and therapeutics: A cutting-edge technology,” C, vol. 7, no. 1, p. 19, 2021. DOI: https://doi.org/10.3390/c7010019

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, and R. N. Muller, “Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications,” Chemical Reviews, vol. 108, no. 6, pp. 2064–2110, 2008. DOI: https://doi.org/10.1021/cr068445e

N. Yang, S. Zhu, D. Zhang, and S. Xu, “Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal,” Materials Letters, vol. 62, no. 4–5, pp. 645–647, 2008. DOI: https://doi.org/10.1016/j.matlet.2007.06.049

L. M. Martínez-Prieto, J. Marbaix, J. M. Asensio, C. Cerezo-Navarrete, P.-F. Fazzini, K. Soulantica, B. Chaudret, and A. Corma, “Ultrastable magnetic nanoparticles encapsulated in carbon for magnetically induced catalysis,” ACS Applied Nano Materials, vol. 3, no. 7, pp. 7076–7087, 2020. DOI: https://doi.org/10.1021/acsanm.0c01392

J. Wan, H. Deng, J. Shi, L. Zhou, and T. Su, “Synthesized magnetic manganese ferrite nanoparticles on activated carbon for sulfamethoxazole removal,” Clean - Soil, Air, Water, vol. 42, no. 9, pp. 1199–1207, 2014. DOI: https://doi.org/10.1002/clen.201300432

W. Wu, Z. Wu, T. Yu, C. Jiang, and W.-S. Kim, “Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications,” Science and Technology of Advanced Materials, vol. 16, no. 2, 2015. DOI: https://doi.org/10.1088/1468-6996/16/2/023501

N. T. K. Thanh, N. Maclean, and S. Mahiddine, “Mechanisms of nucleation and growth of nanoparticles in solution,” Chemical Reviews, vol. 114, no. 15, pp. 7610‒7630, 2014. DOI: https://doi.org/10.1021/cr400544s

N. Li, M. Zheng, X. Chang, G. Ji, H. Lu, L. Xue, L. Pan, and J. Cao, “Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties,” Journal of Solid State Chemistry, vol. 184, no. 4, pp. 953–958, 2011. DOI: https://doi.org/10.1016/j.jssc.2011.01.014

Y.-H. Cho, S. Kim, E. K. Bae, C. K. Mok, and J. Park, “Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures,” Journal of Food Science, vol. 73, no. 3, pp. E115-E121, 2008. DOI: https://doi.org/10.1111/j.1750-3841.2008.00688.x

I. Fatimah, G. Fadillah, and S. P. Yudha, “Synthesis of iron-based magnetic nanocomposites: A review,” Arabian Journal of Chemistry, vol. 14, no. 8. p. 103301, 2021. DOI: https://doi.org/10.1016/j.arabjc.2021.103301

W. Yu, and H. Xie, “A review on nanofluids: Preparation, stability mechanisms, and applications,” Journal of Nanomaterials, vol. 2012, no. 1, p. 435873, 2012. DOI: https://doi.org/10.1155/2012/435873

A. M. El Shafey, “Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review,” Green Processing and Synthesis, vol. 9, no. 1, pp. 304‒339, 2020. DOI: https://doi.org/10.1515/gps-2020-0031

A. V. Rane, K. Kanny, V. K. Abitha, and S. Thomas, “Methods for synthesis of nanoparticles and fabrication of nanocomposites,” Synthesis of Inorganic Nanomaterials: Advances and Key Technologies, pp. 121–139, 2018. DOI: https://doi.org/10.1016/B978-0-08-101975-7.00005-1

Y. Zhang, G.-M. Zeng, L. Tang, D.-L. Huang, X.-Y. Jiang, and Y.-N. Chen, “A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode,” Biosensors and Bioelectronics, vol. 22, no. 9–10, pp. 2121–2126, 2007. DOI: https://doi.org/10.1016/j.bios.2006.09.030

R. Nain, H. Patel, M. Chahar, S. Kumar, D. Rohilla, and M. Pal, “Biosynthesized metallic nanoparticles for sustainable environmental remediation: mechanisms, applications, and future perspectives,” Discover Chemistry, vol. 2, no. 1, p. 124, 2025. DOI: https://doi.org/10.1007/s44371-025-00203-1

Y. Li, C. Shao, Z. Pei, and Y. Pei, “Recent advancements of nanostructured surface-specific supramolecular assemblies and their application in biomedical engineering,” Green Chemistry, vol. 27, no. 7, pp. 1871–1894, 2025. DOI: https://doi.org/10.1039/D4GC04889J

Y. Qin, K. Liu, C. Nie, F. Xie, X. Wang, A. Ali, B. Wang, Q. Hong, and W. Zhao, “One pot preparation of magnetic benzylated cyclodextrin-based hyper-cross-linked polymer for phthalate esters extraction from tea beverages,” Food Chemistry, vol. 475, no. 1, p. 143253, 2025. DOI: https://doi.org/10.1016/j.foodchem.2025.143253

M. Mousavi-Ebadi, and J. Safaei-Ghomi, “Modified magnetic chitosan with mono(6-amino-6-deoxy)-β-cyclodextrin as a novel catalyst toward the synthesis of pyrazolopyrano-pyrimidines and pyrano[2,3-c]pyrazole-3-carboxylates,” Scientific Reports, vol. 15, no. 1, p. 7863, 2025. DOI: https://doi.org/10.1038/s41598-025-92249-5

B. Kaboudin, R. Mostafalu, and T. Yokomatsu, “Fe3O4 nanoparticle-supported Cu(ii)-β- cyclodextrin complex as a magnetically recoverable and reusable catalyst for the synthesis of symmetrical biaryls and 1,2,3-triazoles from aryl boronic acids,” Green Chemistry, vol. 15, no. 8, pp. 2266–2274, 2013. DOI: https://doi.org/10.1039/c3gc40753e

X. Huang, C. Yi, Y. Fan, Y. Zhang, L. Zhao, Z. Liang, and J. Pan, “Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy,” Materials Science and Engineering: C, vol. 42, pp. 325–332, 2014. DOI: https://doi.org/10.1016/j.msec.2014.05.041

R. Chalasani, and S. Vasudevan, “Cyclodextrin-functionalized Fe3O4@TiO2: Reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies,” ACS Nano, vol. 7, no. 5, pp. 4093–4104, 2013. DOI: https://doi.org/10.1021/nn400287k

Q. M. Kainz, and O. Reiser, “Polymer- and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents,” Accounts of Chemical Research, vol. 47, no. 2, pp. 667–677, 2014. DOI: https://doi.org/10.1021/ar400236y

B. Liu, W. Zhang, F. Yang, H. Feng, and X. Yang, “Facile method for synthesis of Fe3O4@polymer microspheres and their application as magnetic support for loading metal nano-particles,” The Journal of Physical Chemistry C, vol. 115, no. 32, pp. 15875–15884, 2011. DOI: https://doi.org/10.1021/jp204976y

N. Saifuddin, A. Z. Raziah, and A. R. Junizah, “Carbon nanotubes: A review on structure and their interaction with proteins,” Journal of Chemistry, vol. 2013, no. 1, p. 676815, 2013. DOI: https://doi.org/10.1155/2013/676815

J. Gallego, J. Tapia, M. Vargas, A. Santamaria, J. Orozco, and D. Lopez, “Synthesis of graphene-coated carbon nanotubes-supported metal nanoparticles as multifunctional hybrid materials,” Carbon, vol. 111, pp. 393–401, 2017. DOI: https://doi.org/10.1016/j.carbon.2016.10.014

S. K. Folsom, D. J. Ivey, F. S. McNair, and A. R. Siamaki, “Nickel-Fe3O4 magnetic nanoparticles supported on multiwalled carbon nanotubes: Effective catalyst in suzuki cross coupling reactions,” Catalysts, vol. 11, no. 4, p. 495, 2021. DOI: https://doi.org/10.3390/catal11040495

E. M. Vunain A. K. Mamba, B. B., “Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review,” International Journal of Biological Macromolecules, vol. 86, pp. 570-586, 2016. DOI: https://doi.org/10.1016/j.ijbiomac.2016.02.005

A. Z. Khalifa, O. Cizer, Y. Pontikes, A. Heath, P. Patureau, S. A. Bernal, and A. T. M. Marsh, “Advances in alkali-activation of clay minerals,” Cement and Concrete Research, vol. 132, p. 106050, 2020. DOI: https://doi.org/10.1016/j.cemconres.2020.106050

G. Zhao, J. Wang, Y. Li, X. Chen, and Y. Liu, “Enzymes immobilized on superparamagnetic Fe3O4@Clays nano-composites: Preparation, characterization, and a new strategy for the regeneration of supports,” The Journal of Physical Chemistry C, vol. 115, no. 14, pp. 6350–6359, 2011. DOI: https://doi.org/10.1021/jp200156j

K. Kalantari, M. B. Ahmad, K. Shameli, M. Z. B. Hussein, R. Khandanlou, and H. Khanehzaei, “Size-controlled synthesis of Fe3O4 magnetic nanoparticles in the layers of montmorillonite,” Journal of Nanomaterials, vol. 2014, pp. 1–10, 2014. DOI: https://doi.org/10.1155/2014/739485

T. R. Flotte, “Gene therapy: The first two decades and the current state-of-the-art,” Journal of Cellular Physiology, vol. 213, no. 2, pp. 301-305, 2007. DOI: https://doi.org/10.1002/jcp.21173

A. Ragusa, I. García, and S. Penadés, “Nanoparticles as nonviral gene delivery vectors,” IEEE transactions on nanobioscience, vol. 6, no. 4, pp. 319-330, 2007. DOI: https://doi.org/10.1109/TNB.2007.908996

D. Cai, J. M. Mataraza, Z.-H Qin, Z. Huang, J. Huang, T. C. Chiles, D. Carnahan, K. Kempa, and Z. Ren, “Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing,” Nature Methods, vol. 2, no. 6, pp. 449–454, 2005. DOI: https://doi.org/10.1038/nmeth761

S. J. Mattingly, M. G. Otoole, K. T. James, G. J. Clark, and M. H. Nantz, “Magnetic nanoparticle-supported lipid bilayers for drug delivery,” Langmuir, vol. 31, no. 11, pp. 3326–3332, 2015. DOI: https://doi.org/10.1021/la504830z

Y. Xu, Y. Shan, Y. Zhang, B. Yu, Y. Shen, and H. Cong, “Multi-functional Fe3O4@C-based nanoparticles coupling optical/MRI imaging and pH/photothermal controllable drug release as efficient anti-cancer drug delivery platforms,” Nanotechnology, vol. 30, no. 42, p. 425102, 2019. DOI: https://doi.org/10.1088/1361-6528/ab2e40

J. Wang, J. Fang, P. Fang, X. Li, S. Wu, W. Zhang, and S. Li, “Preparation of hollow core/shell Fe3O4@graphene oxide composites as magnetic targeting drug nanocarriers,” Journal of Biomaterials Science, Polymer Edition, vol. 28, no. 4, pp. 337–349, 2017. DOI: https://doi.org/10.1080/09205063.2016.1268463

H. Khurshid, S. H. Kim, M. J. Bonder, L. Colak, B. Ali, S. I. Shah, K. L. Kiick, and G. C. Hadjipanayis, “Development of heparin-coated magnetic nanoparticles for targeted drug delivery applications,” Journal of Applied Physics., vol. 105, no. 7, 2009. DOI: https://doi.org/10.1063/1.3068018

N. S. Elbialy, M. M. Fathy, and W. M. Khalil, “Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery,” International Journal of Pharmaceutics, vol. 490, no. 1–2, pp. 190–199, 2015. DOI: https://doi.org/10.1016/j.ijpharm.2015.05.032

S. Liu, B. Yu, S. Wang, Y. Shen, and H. Cong, “Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles,” Advances in Colloid and Interface Science, vol. 281, p. 102165, 2020. DOI: https://doi.org/10.1016/j.cis.2020.102165

H. H. S. Hossein, I. Jabbari, A. Zarepour, A. Zarrabi, M. Ashrafizaden, A. Taherian, and P. Makvandi, “Functionalization of magnetic nanoparticles by folate as potential MRI contrast agent for breast cancer diagnostics,” Molecules, vol. 25, no. 18, p. 4053, 2020. DOI: https://doi.org/10.3390/molecules25184053

B. Feng, R. Y. Hong, L. S. Wang, L. Guo, H. Z. Li, J. Ding, Y. Zheng, and D. G. Wei, “Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 328, no. 1–3, pp. 52–59, 2008. DOI: https://doi.org/10.1016/j.colsurfa.2008.06.024

A. S. Davydov, A. V. Belousov, G. A. Krusanov, M. A. Kolyvanova, B. B. Kovalev, A. S. Komlev, P. V. Krivoshapkin, V. N. Morozov, and V. I. Zverev, “Promising magnetic nanoradiosensitizers for combination of tumor hyperthermia and x-ray therapy: Theoretical calculation,” Journal of Applied Physics, vol. 129, no. 3, p. 033902, 2021. DOI: https://doi.org/10.1063/5.0032843

P. H. Nam, L. T. Lu, P. H. Linh, D. H. Manh, L. T. T. Tam, N. X. Phuc, P. T. Phong, and I-J. Lee, “Polymer-coated cobalt ferrite nanoparticles: Synthesis, characterization, and toxicity for hyperthermia applications,” New Journal of Chemistry, vol. 42, no. 17, pp. 14530–14541, 2018. DOI: https://doi.org/10.1039/C8NJ01701H

I. Crǎciunescu, P. Palade, N. Iacob, G. M. Ispas, A. E. Stanciu, V. Kuncser, and R. P. Turcu, "High-performance functionalized magnetic nanoparticles with tailored sizes and shapes for localized hyperthermia applications,” The Journal of Physical Chemistry C, vol. 125, no. 20, pp. 11132–11146, 2021. DOI: https://doi.org/10.1021/acs.jpcc.1c01053

O. K. Arriortua, M. Insausti, L. Lezama, I, G. de, Muro, E. Garaio, J. M. de la Fuente, R. M. Fratila, M. P. Morales, R. Costa, M. Eceiza, M. Sagartzazu-Aizpurua, and J. M. Aizpurua, “RGD-Functionalized Fe3O4 nanoparticles for magnetic hyperthermia,” Colloids Surfaces B Biointerfaces, vol. 165, pp. 315–324, 2018. DOI: https://doi.org/10.1016/j.colsurfb.2018.02.031

W. Zhang, L. Y. Zhang, X. J. Zhao, and Z. Zhou, “Citrus pectin derived ultrasmall Fe3O4@C nanoparticles as a high-performance adsorbent toward removal of methylene blue,” Journal of Molecular Liquids, vol. 222, pp. 995–1002, 2016. DOI: https://doi.org/10.1016/j.molliq.2016.07.144

R. H. Hesas, M. S. Baei, H. Rostami, J. Gardy, and A. Hassanpour, “An investigation on the capability of magnetically separable Fe3O4/mordenite zeolite for refinery oily wastewater purification,” Journal of Environmental Management, vol. 241, pp. 525–534, 2019. DOI: https://doi.org/10.1016/j.jenvman.2018.09.005

N. C. Feitoza, T. D. Goncalves, J. J. Mesquita, J. S. Menegucci, M-K. M. S. Santos, J. A. Chaker, R. B. Cunha, A. M. M. Medeiros, J. C. Rubim, and M. H. Sousa, “Fabrication of glycine-functionalized maghemite nanoparticles for magnetic removal of copper from wastewater,” Journal of Hazardous Materials., vol. 264, pp. 153–160, 2014. DOI: https://doi.org/10.1016/j.jhazmat.2013.11.022

A. A. Babaei, B. Kakavandi, M. Rafiee, F. Kalantarhormizi, I. Purkaram, E. Ahmadi, and S. Esmaeili, “Comparative treatment of textile wastewater by adsorption, Fenton, UV-Fenton and US-Fenton using magnetic nanoparticles-functionalized carbon (MNPs@C),” Journal of Industrial and Engineering Chemistry, vol. 56, pp. 163–174, 2017. DOI: https://doi.org/10.1016/j.jiec.2017.07.009

X. Liu, J. Tian, Y. Li, N. Sun, S. Mi, Y. Xie, and Z. Chen, “Enhanced dyes adsorption from wastewater via Fe3O4 nano-particles functionalized activated carbon,” Journal of Hazardous Materials., vol. 373, pp. 397–407, 2019. DOI: https://doi.org/10.1016/j.jhazmat.2019.03.103

Q. Zhang, Q. Xu, Y. Guo, X. Sun, and X. Wang, “Acetylcholinesterase biosensor based on the mesoporous carbon/ferroferric oxide modified electrode for detecting organophosphorus pesticides,” RSC Advances, vol. 6, no. 29, pp. 24698–24703, 2016. DOI: https://doi.org/10.1039/C5RA21799G

M. Eguílaz, R. Villalonga, P. Yáñez-Sedeño, and J. M. Pingarrón, “Designing electrochemical interfaces with functionalized magnetic nanoparticles and wrapped carbon nanotubes as platforms for the construction of high-performance bienzyme biosensors,” Analytical Chemistry, vol. 83, no. 20, pp. 7807–7814, 2011. DOI: https://doi.org/10.1021/ac201466m

W. Zhang, C. Chen, D. Yang, G. Dong, S. Jia, B. Zhao, L. Yan, Q. Yao, A. Sunna, and Y. Liu “Optical biosensors based on nitrogen-doped graphene functionalized with magnetic nano-particles,” Advanced Materials Interfaces, vol. 3, no. 20, p. 1600590, 2016. DOI: https://doi.org/10.1002/admi.201600590

R. J. White, R. Luque, V. L. Budarin, J. H. Clark, and D. J. Macquarrie, “Supported metal nanoparticles on porous materials. methods and applications,” Chemical Society Reviews, vol. 38, no. 2, pp. 481–494, 2009. DOI: https://doi.org/10.1039/B802654H

F. Zhang, J. Jin, X. Zhong, S. Li, J. Niu, R. Li, and J. Ma, “Pd immobilized on amine-functionalized magnetite nanoparticles: A novel and Highly active catalyst for hydrogenation and Heck reactions,” Green Chemistry, vol. 13, no. 5, pp. 1238–1243, 2011. DOI: https://doi.org/10.1039/c0gc00854k

G. J. Hutchings, “Nanocrystalline gold and gold palladium alloy catalysts for chemical synthesis,” Chemical Communications, no. 10, pp. 1148-1164, 2008. DOI: https://doi.org/10.1039/B712305C

M. Hajjami, and S. Kolivand, “New metal complexes supported on Fe3O4 magnetic nanoparticles as recoverable catalysts for selective oxidation of sulfides to sulfoxides,” Applied Organometallic Chemistry, vol. 30, no. 5, pp. 282–288, 2016. DOI: https://doi.org/10.1002/aoc.3429

F. Rajabi, S. Naserian, A. Primo, and R. Luque, “Efficient and highly selective aqueous oxidation of sulfides to sulfoxides at room temperature catalysed by supported iron oxide nanoparticles on SBA-15,” Advanced Synthesis & Catalysis, vol. 353, no. 11–12, pp. 2060–2066, 2011. DOI: https://doi.org/10.1002/adsc.201100149

M. Khodakarami, and M. Bagheri, “Recent advances in synthesis and application of polymer nanocomposites for water and wastewater treatment,” Journal of Cleaner Production, vol. 296, p. 126404, 2021. DOI: https://doi.org/10.1016/j.jclepro.2021.126404

S. K. Sharma, N. Shrivastava, F. Rossi, L. D. Tung, and N. T. K, Thanh, “Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment,” Nano Today, vol. 29, p. 100795, 2019. DOI: https://doi.org/10.1016/j.nantod.2019.100795

G. Rando, S. Sfameni, M. Galletta, D. Drommi, S. Cappello, and M. R. Plutino, “Functional nanohybrids and nanocomposites development for the removal of environmental pollutants and bioremediation,” Molecules, vol. 27, no. 15, p. 4856, 2022. DOI: https://doi.org/10.3390/molecules27154856

A. M. Abu-Dief, and S. M. Abdel-Fatah, “Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 7, no. 1, pp. 55–67, 2018. DOI: https://doi.org/10.1016/j.bjbas.2017.05.008

X. Duan, J. Liu, J. Hao, L. Wu, B. He, Y. Qiu, J. Zhang, Z. He, J. Xi, and S. Wang, “Magnetically recyclable nanocatalyst with synergetic catalytic effect and its application for 4-nitrophenol reduction and Suzuki coupling reactions,” Carbon, vol. 130, pp. 806–813, 2018. DOI: https://doi.org/10.1016/j.carbon.2018.01.038

ดาวน์โหลด

เผยแพร่แล้ว

2025-08-28

วิธีการอ้างอิง

[1]
K. . DHIMAN, “A review on recent progress in supported magnetic nanoparticles: From synthetic methods to applications”, J Met Mater Miner, ปี 35, ฉบับที่ 4, น. e2437, ส.ค. 2025.

ฉบับ

บท

บทความปริทรรศน์

Categories